
Regulador com diodo zener

Exercício resolvido

Dado o circuito abaixo, calcular as correntes I_S, I_L e I_Z para os valores de carga:

$80\Omega e 100\Omega$

- → A tensão V_S é a tensão que polariza o diodo zener na região de zener; nestas condições o resistor R_S é o responsável pela polarização do diodo Zener.
- → A corrente I_L é a corrente que circula pela carga
- → A corrente I_Z é a corrente de zener

Quando I_Z aumenta, I_S diminui; quando I_Z diminui, I_S aumenta, mantendo assim um valor de I_L constante (efeito de regulação), daí:

$$I_L = I_S - I_Z$$

Dados:

 $V_Z = 6V$

 $P_{D(max)} = 0.42W (420mW)$

 $I_{Z(max)} = 70mA$

 $I_{Z(min)} = 7mA$

CARGA DE 100Ω

 $E = V_S + V_Z$

$$10 = V_S + 6$$

$$V_S = 10 - 6$$

$$V_S = 4V$$

$$V_S = R_S \times I_S$$
, onde $\rightarrow I_S = V_S/R_S = 4/50 = 80 \text{mA}$

$$V_Z = V_L = 6$$
, onde $\rightarrow I_L = V_L/R_L = 6/100 = 60 \text{mA}$

A partir da fórmula: $I_S = I_Z + I_L$, temos $\rightarrow I_Z = I_S - I_L = 80 - 60 = 20 \text{mA}$

RESPOSTA:

 $I_s = 80mA$

 $I_L = 60mA$

 $I_z = 20mA$

CARGA DE 80Ω

Levando-se em conta que a tensão de entrada é constante, teremos então I_{S} constante = 80mA

$$I_L = V_L/R_L = 6/80 = 75mA$$

$$I_7 = I_S - I_1 = 80 - 75 = 5mA$$

RESPOSTA:

 $I_s = 80mA$

 $I_L = 75mA$

 $I_z = 5mA$

CONCLUSÃO: Variando-se o valor da carga, mantendo-se a tensão de entrada constante em 10V, observa-se que através da polarização conveniente do diodo zener de 6V, a corrente de carga I_L e a corrente de zener I_Z variam, satisfazendo portanto a equação: $I_L = I_S - I_Z$ (I_S constante).

Verificando a potência dissipada pelo diodo zener:

Para carga de $100\Omega \rightarrow I_Z = 20 \text{mA}$

 $P_Z = V_Z \times I_Z = 6V \times 20mA = 120mW$

Para carqa de $80 \Omega \rightarrow I_Z = 5mA$

 $P_z = V_z \times I_z = 6V \times 5mA = 30mW$

Como $PD_{(max)} = 420 \text{mW}$, o diodo zener poderá ser utilizado sem problemas.