TUTORIAL - PROTEUS

ARES PROFESSIONAL – Design Suíte

O Proteus ARES Professional é uma suíte destinada à elaboração de placas de circuitos impressos, a partir do Proteus ISIS ou do próprio Proteus ARES.

Este tutorial foi desenvolvido com o Proteus ARES Professional, versão 7.10 - SP1.

ARES Professional	? 🗙
Labcenter Electronics 1990-2011 Release 7.10 SP1 (Build 13508) - Level 2 <u>http://www.labcenter.co.uk</u>	
Registered To: Edgar Zuim CPS - ETEC Albert Einstein Customer Number: 29-20611-025 Update Subscription Expires: 12/04/2016	
Free Memory: 1,814,904,832 by Windows XP SP3 v5.01, Build 2600 (Common Controls v5.82, Shell v6.00)	tes

Para melhor aproveitamento deste tutorial é altamente recomendável como prérequisito, o conhecimento do funcionamento do Proteus ISIS uma vez que, muitas vezes a construção das placas de circuito impresso é feita a partir do diagrama esquemático desenvolvido no Proteus ISIS.

PLACA DE CI DE UM MULTIVIBRADOR ASTÁVEL

VAGALUME BIÔNICO

Iniciaremos este tutorial com um circuito simples, um *multivibrador astável*, o qual denominaremos Vagalume Biônico, conforme mostra o circuito a seguir.

O primeiro passo é a construção do esquema no Proteus ISIS. É importante atribuir o *PCB Package* ou *Invólucro* aos componentes, para facilitar a construção da placa de CI.

Neste caso, os únicos *packages* não atribuídos foram para os Leds (D1 e D2), mas veremos na sequência como proceder para atribuição de *packages*.

Veja a seguir os PBC Packages atribuídos aos componentes.

Com um duplo clique sobre o componente (Edit Component), é possível visualizar o PCB Package, conforme mostra a figura abaixo:

R1 360R	47k 47k	R2 360R	
			SIL-100-02 +VCC
G Edit Component			? 🛛
Component <u>R</u> eference Capacitance:	: Cl 1uF	Hic	lden: DK
PCB Package:	ELEC-RAD10	▼ ? Hide Al	
Uther Properties:			

Atribuindo um PCB Package para os Leds:

1 – Editar o componente LED (duplo clique sobre o mesmo). Observe na figura a seguir que o campo PCB Package consta como não especificado (Not Specified).

É altamente recomendável que seja especificado o PCB Package antes de definir a Netlist final para a construção da placa de circuito impresso. Quando a Netlist é definida no Proteus ISIS, a exportação para o Proteus ARES permite que seja visualizada a interligação entre os diversos componentes do esquema, através dos "ratsnests".

2 – Clicar no botão "?", onde será aberta uma janela para escolha do PCB Package (Pick Packages).

	D1 LED-RED		D2 LED-R
Edit Component			?
Component <u>R</u> eference:	D1	Hidden:	<u>о</u> к
Component <u>V</u> alue:	LED-RED	Hidden:	<u> </u>
Model Type:	Analog	▼ Hide All ▼	
Forward Voltage:	2.2V	Hide All 💌	
Full drive current:	10mA	Hide All 💌	
PCB Package:	(Not Specified)	▼ ? Hide All ▼	

clicar

Para esse componente foram selecionados:

Category = Miscellaneous

-> Device = LED

-> Type = All Types

-> Sub-category = All Sub-categories

E Pick Packages

Keywor <u>d</u> s:	<u>R</u> esults (79):		
	Device	Library	Description
Match <u>W</u> hole Words?	7SEG-56	PACKAGE	Single 7 segment display, 0.56in digit height
Category	7SEG.3+A	PACKAGE	7 Segment display common anode with decimal point, 0.3
	7SEG.3-C	PACKAGE	7 Segment display common cathode with decimal point, I
(All Categories)	CB-5	PACKAGE	Package CB, 5-pin module, leadform PFF
Lonnectors	DD14SEG-DIL18	PACKAGE	14 Segment display, 18 pin DIL IC, 0.6in width
Discrete Components	DD7SEG-56	PACKAGE	Dual 7 segment display, 0.56in digit height
Missellandeuro	LDR	PACKAGE	Miniature LDR
Miscellaneous	LED	PACKAGE	Light Emitting Diode, 100th pitch, A-K pinout
1	LINK20	PACKAGE	200th wire link
<u>T</u> ype:	LINK30	PACKAGE	300th wire link
(All Tupes)	LINK40	PACKAGE	400th wire link
Surface Mount	MATRIX-5X7-18MM	PACKAGE	5X7 LED matrix, 18mm height
Surface Mount (IPC7351)	MATRIX-5X7-50MM	PACKAGE	5X7 LED matrix, 50mm height
Through Hole	MATRIX-8X8-20MM	PACKAGE	8x8 LED matrix, 20mm height
	MATRIX-8X8-48MM	PACKAGE	8x8 LED matrix, 48mm height
<u>S</u> ub-category:	PRE-HMIN	PACKAGE	 Minature skeleton preset potentiometer, horizontal mount
(All Sub-categories)	PRE-HMT	PACKAGE	 Multi-turn preset potentiometer, horizontal mounting, L=0.
14 Segment Displays	PBF HTO 75	DACKACE	- Martina in the international mounting. L=0.

LED-RED 3mm	•	LED-RED 3mm	
Edit Component			? 🔀
Component <u>R</u> eference:	D1	Hidden: 🔲 📔	
Component <u>V</u> alue:	LED-RED	Hidden:	Cancel
Model Type:	Analog	▼ Hide All ▼	
Forward Voltage:	2.2V	Hide All 💌	
Full drive current:	10mA	Hide All 💌	
PCB Package:	LED	? Hide All 💌	

Observe que a distância entre os pinos é de 0,1in (1/10 de polegada).

Relembrando as unidades de medidas usadas no Proteus:

Inch (in) = polegada = 25,4mm Thou (th) = Mil = 0,0254mm 25,4 /10 = 2,54mm (décimo de polegada) 25,4 /1000 = 0.0254 1mm / 0,0254 = 39,37 mil

Antes de exportarmos a Netlist para o ARES, vamos verificar se tudo está em ordem no Proteus ISIS, clicando no ícone Design Explorer:

ystem Help							
📕 LO_vag_bio - Physical Partlist Vi	ew						
<u>}</u> ץ ← → ↓ क़ 🔤 🕮	Reference	Туре	Value	Circuit/Package			
P DOOTIO	⇒ -C1	CAP-ELEC	1uF	ELEC-RAD10			
RUUTIU	⇒ -C2	CAP-ELEC	1uF	ELEC-RAD10			
	⇒ D1	LED-RED	LED-RED	LED			
	⇒ D2	LED-RED	LED-RED	LED			
	 1 →J1	SIL-100-02	SIL-100-02	SIL-100-02			
	 ⊅-Q1	BC548	BC548	T092/18			
	↓ Q2	BC548	BC548	T092/18			
	⇒ - R1	MINRES360R	360R	RES40			
	1 → R2	MINRES360R	360R	RES40			
	1 ₽ R3	MINRES360R	47k	RES40			
	 ≠ > R4	MINRES360R	47k	RES40			

Podemos observar que todos os componentes estão com os seus respectivos PCB Packages.

ce Debug Library Template	System Help	clicar
+ 🕂 🔍 🔍 🍭 🛛 🎔) 🕀 🕱 🗖 🚺 🗗
<i>e</i> Bill Of Materials For L	O_vag_bio - Proteus HTML Viewer	
File Edit		
🖻 🖬 🖻 🎒		
		<u> </u>
Bill Of Materials	For LO_Vag_Bio.DSN	
Design Title	:LO_vag_bio.DSN	
Author	: <none></none>	
Revision	: <none></none>	
Design Created	: domingo, 6 de janeiro de 2013	
Design Last Modifi	ied:sexta-feira, 28 de junho de 2013	
Total Parts In Desi	gn : 11	

A figura anterior mostra a lista de materiais (BOM).

Para finalizar, podemos verificar se existem erros clicando no ícone "View Electrical Report" que nos mostrará as regras de ligações elétricas (ERC).

Î	
ł	
	ELECTRICAL RULES CHECK REPORT
	Design: C:\Documents and Settings\EDGAR\Desktop\Proteus - Doc. no.: <none> Revision: <none> Author: <none> Created: 06/01/13</none></none></none>
	Modified: 28/06/13 #I:Compiling design 'C:\Documents and Settings\EDGAR\Desktop %C=0002,00000003
	Netlist generated OK. No ERC errors found.

O próximo passo é transferir a Netlist para o Proteus ARES, bastando para isso clicar no ícone correspondente, conforme ilustra a figura abaixo:

2	aa 🏂 🛛	I 🗈 🗙 🖉	9 🕏 🗲		
				Netlist	Transfer To ARES

Será aberto o programa Proteus ARES com a área de trabalho pronta para ser manipulada. Vamos escolher uma opção para o layout = DEFAULT:

Create New I	Layout					×
Select a templa	ate to act as the	default for the ne	ew layout:			
DEFACILT	Double Eurocard	Double Eurocard	Extended Double E	Extended Double E	Generic Single Layer	

A opção Component Mode deverá estar selecionada:

Escolha do Snap Grid

A escolha do Grid, antes de posicionar os componentes na área de trabalho é importante, pois facilita muito o posicionamento do componente principalmente com a função Snap habilitada (traduzindo para o português, snap = agarrar).

Por exemplo, um Grid de 25th, corresponde a 1/10 de polegada dividido por 4, conforme ilustra as figuras a seguir, tomando como exemplo C1, cujos terminais estão afastados entre si em 0,1in (1 décimo de polegada, que equivale a 2,54mm).

A figura abaixo mostra o mesmo componente em um Snap Grid igual a 50th:

A visualização (estilo) do Grid pode ser modificada de acordo com a preferência do projetista, como por exemplo, além de quadriculado, pode ser visualizado em pontos ou simplesmente fundo preto, sem nenhum Grid.

eres l	0_vag_	bio	- ARES	Profess	ional	
File	Output	Viev	v Edit	Library	Tools	Technolog
	i 🔁 🔛	ø	<u>R</u> edraw		R	
		4	Elip		F	
1		‡	<u>G</u> rid		G	N
₽.		I	<u>L</u> ayers.		Ctrl	+L 1/5
•		m	<u>M</u> etric		М	
2		- + -	<u>O</u> rigin		0	
<u> </u>	C CO	ľĽ	<u>Z</u> -Theta		Z	
	C2 D2	C2 D2	<u>X</u> Curso	r	х	
ж Н	J1 Q1		Goto XY		Ctrl	+G
ö	Q2 R1		Goto Co	mponent.	Ctrl	+C
ŏ.	R2 R3		Goto Pir	۱	Ctrl	+P
0	R4		Snap 1t	h	Ctrl	+F1
			Snap 5t	h	F2	
			Snap 25	ith	F3	
		~	Snap 50	Ith	F4	
		÷	Pan		F5	

A modificação da visualização do Grid pode ser feita pressionando a tecla G e o *Snap to Grid* pode ser modificado pressionando as teclas de atalho Ctrl+F1, F2, F3 e F4, conforme ilustra a figura anterior.

Sobre os LAYERS do Proteus ARES:

Na construção da placa de CI, os layers devem ser devidamente configurados, caso contrário, ocorrerão erros. Para cada parte do projeto deve ser especificado o layer, como por exemplo, para colocação dos componentes o layer é Silk Bottom, para traçar as trilhas interligando os componentes o layer é Copper Bottom e assim por diante.

Os layers Inner 1 a Inner 14 são layers internos utilizados em placas de CI de multicamadas, do tipo das usadas em "motherboard" de computadores.

A figura abaixo mostra os layers disponíveis no Proteus ARES.

Posicionando os componentes – LAYER TOP SILK:

Vamos posicionar os componentes com Snap em 25th.

Iniciando da direita para a esquerda, posicionando os componentes de forma que o caminho a ser percorrido pela corrente seja o menor possível. É recomendável que se tenha em mãos o esquema para facilitar o posicionamento dos componentes.

A figura a seguir mostra os componentes Q1, R1, R3, D1 e C1 posicionados na área de trabalho, onde se observa que os mesmos estão interligados por uma linha verde.

Essa linha verde representa a ligação elétrica que auxiliará mais tarde no roteamento manual, ou seja, no desenho das trilhas através dos ratsnests (ninho de rato).

Reposicionando componentes:

Depois de fixado na área de trabalho, qualquer componente pode ser reposicionado por necessidade de estética ou mesmo de fixação indevida.

Basta aproximar o cursor do mouse no componente, com o **Modo de Seleção** (Selection Mode) ativado, e ao ser criada a área de foco em torno do mesmo, clicar (botão direito) para selecionar, clicar novamente e arrastar mantendo o botão do mouse pressionado. Liberar o botão do mouse assim que for reposicionado.

As figuras a seguir mostram esse procedimento, que é bastante simples.

Mudança do estilo do cursor:

Da mesma forma que no Proteus ISIS é possível modificar o estilo do cursor para seta, seta + X e cruz grande (Large Cross), pressionando a tecla X.

File	Output	View Edit L	ibrary Tools	Technology	System	Help
	iii 🔁 🔡	🖉 <u>R</u> edraw	R	1		n 🕂 🖄
		⊿ <mark>^</mark> ⊾ Elip	F			
		<u> </u>	G			
	10	Layers	Ctrl-	+L		
		m <u>M</u> etric	М			
2		+ <u>O</u> rigin	0			
<u> </u>	C C0	Z-Theta	Z			
T		<u>X</u> Cursor	X			
Ж						

A figura a seguir mostra os componentes posicionados na área de trabalho, seguindo o mais fielmente possível o posicionamento dos componentes no esquema elétrico.

Vamos reposicionar o label de C2 e de J1, para tornar o layout mais estético.

O procedimento é idêntico ao mencionado para o reposicionamento do componente, bastando para isso, com o *Selection Mode* ativado, aproximar o cursor no label, e ao ser criada a área de foco, clicar com o botão direito do mouse, clicar novamente para selecionar e arrastar e, se for necessário rotacionar, usar as teclas "-" e "+".

Veja um exemplo na figura abaixo:

A figura a seguir mostra a alteração feita nos labels de C1 e J1.

Criando uma borda (contorno) para a placa – LAYER BOARD EDGE:

O primeiro passo é desenhar o contorno da placa com a ferramenta 2D Graphics Box Mode

Interligando os componentes (roteamento manual) – LAYER COPPER BOTTOM:

O próximo passo é interligar manualmente todos os componentes, orientando-se pelas linhas verdes (ratsnests).

Vamos antes criar uma área de chapado para interligar todos os pontos de terra comuns, no caso deste circuito, os emissores de Q1 e Q2 e o polo negativo da bateria em J1. Para criar o chapado, clicar no ícone Zone Mode.

N C1	
🔥 C2	
Jana Mada	
20ne Mode	
J1	

Veja as figuras a seguir:

Selecionar T30:

		-	_	_
<u> </u>	C E TRACES			
Ж	FANOUT			
Ч°,	RELIEF	_		
<u>-</u>	T8			
0	T10			
٠	T15			
٥	T20 T25			
	T30			
Ξ.	T40 K			
2	T50 T60			
	1770 I			

Tracejar dentro do contorno da placa:

Após ser completado o tracejado, surgirá uma janela (Edit Zone):

	? 🔀
(None)	
Bottom Copper	▼ Dimmed ▼
T30	<u>C</u> ustom:
RELIEF	▼
Solid	💌 <u>S</u> tep: 25th 🚍
10th 🚍	N
🗸 Supress Islands: 🗸 🗸	~
Allow Nesting:	<u>O</u> K <u>C</u> ancel
	[None] Bottom Copper T30 RELIEF Solid 10th Supress Islands: Allow Nesting:

Vamos alterar os parâmetros conforme mostra a figura abaixo.

Edit Zone	? 🛛]
<u>N</u> et:	GND=POWER	[
Layer/Colour:	Bottom Copper 💌 Normal 💌	
<u>B</u> oundary:	T30 Custom:	ſ
<u>R</u> elief:	RELIEF	
<u>Т</u> уре:	Empty Step: 25th	
Cle <u>a</u> rance:	12th 😑 ^{KS}	
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	 ✓ Supress Islands: ✓ Allow Nesting: <u>□K</u>]

Observe que a opção Empty foi selecionada pois a placa será roteada manualmente.

O clearence de 12th, significa que entre as trilhas e o chapado haverá uma distância de 12th, conforme veremos adiante.

Observe que a área do chapado ficou esmaecida em relação ao fundo da área de trabalho (pois foi selecionada a opção Empty, ou vazio).

Antes de iniciar o roteamento, vamos analisar a conectividade elétrica.

Clicar no ícone Connectivity Highlight Mode:

_	T COMPONENTS	
T	C1	
¥.	C2	
<u></u>	D1	\vdash
H.	D2	
≗ \}	J1	
QČ	nnectivity Highlight Mode	
	Q2	
- H		\vdash
	HZ I	
	H3	

Será mostrada então a relação de todas as Nets

1	T NETS	
Т	#00000	
¥	#00001	
<u></u>	#00002	
ЦĽ I	#00003	
00	#00005	
0	#00006	
Ξ.	+3V=POWER	
•	GND=POW&R	
	{NC}	
	l (VOID) l	

Um duplo clique em +3V=POWER, por exemplo, mostrará todos os componentes que são ligados no polo positivo da bateria de 3V e assim por diante. A figura abaixo mostra esses pontos iluminados (Highligth).

Para iniciar o roteamento, clicar no ícone Track Mode. Selecionar a opção T30, que configura a largura das trilhas.

A figura abaixo mostra o início do roteamento, a partir do anodo do diodo D1 até o terminal 1 do resistor R3.

Observe a linha verde (ratsnest) que interliga esses dois pontos onde a seta amarela sugere a direção. A partir do momento em que esse dois pontos são interligados, essa linha verde desaparece, indicando que a conexão foi completada.

Veja a figura a seguir:

Proceder de forma idêntica para os demais componentes, exceto as ligações de terra que serão feitas na área de chapado.

A figura a seguir mostra os componentes interligados, exceto os pontos de terra.

Para finalizar, vamos executar a área de chapado para interligar os pontos de terra.

Clicar no ícone Zone Mode e em seguida na borda da placa, com o botão direito do mouse.

Toda a área ficará branca.

Clicar em Edit Properties:

Modificar a opção Empty para Solid e clicar OK.

Net: GND=POWER Layer/Colour: Bottom Copper Boundary: T30 Belief: RELIEF Lype: Empty Clearance: Outline Outline Hatched Empty Clearance: Pelieve Pins: Exclude Tracking:	dit Zone		? 🛛
Layer/Colour: Bottom Copper Boundary: T30 Belief: RELIEF Lype: Empty Clegrance: Solid Outline Hatched Empty Clegrance: Solid Outline Hatched Empty Compatible Route to this Zone:	<u>N</u> et:	GND=POWER	•
Boundary: T30 Belief: RELIEF Type: Empty Clegrance: Solid Outline Hatched Empty Compatible Route to this Zone:	Layer/Colour:	Bottom Copper 📃	Normal 🗨
Belief: RELIEF Iype: Empty Step: 25th Clegrance: Solid Outline Empty Empty Empty Relieve Pins: Empty Empty Empty Empty Relieve Dins: Empty Empty Empty Empty Empty Empty Route to this Zone: Image: Compatible Image: Compatible Image: Cancel Image: Cancel Image: Cancel	<u>B</u> oundary:	T30 💌	Custom:
Imply Step: 25th Clearance: Solid Outline Dutline Hatched Empty Exclude Tracking: Compatible DK Route to this Zone: UK Cancel	<u>R</u> elief:	RELIEF	
Solid Outline Relieve Pins: Exclude Tracking: Route to this Zone: Solid Outline Outline Outline Difference Outline Compatible DK Cancel	<u>T</u> ype:	Empty 💌	<u>S</u> tep: 25th 🗮
	Cle <u>a</u> rance: Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	Solid Outline & Hatched Empty Compatible <u>D</u> K	<u>C</u> ancel

As figuras a seguir mostram a placa de CI com o chapado, interligando os pontos de terra.

Clicar em qualquer ponto da área de trabalho:

A figura a seguir mostra detalhes da ligação do terra.

Vamos agora identificar nossa placa, com o nome Vagalume e identificar o conector J1 quanto a sua polaridade. Basta apenas identificar a polaridade (-).

O processo é idêntico ao usado Proteus ISIS, porém não esquecer de que essa identificação deve ser feita no layer TOP SILK.

Edit 2D Grap	hics Text		? 🛛					
String:	Vagalume							
	Justification:		Font Attributes:					
Horizontal:	🔶 Left 🛛 🔿 Centre 🔿 Right	Eont face:	Vector Font					
V.Vertical:	🔿 Top 🔷 Middle 🔶 Bottom	<u>H</u> eight:	60th 😑					
	Graphic's Style:		50th					
<u>G</u> lobal Style:	SOLID	Bold?						
Line Width:	Follow Global?	Italic?						
Colour:	Follow Global?	Underline?						
		Strikeout?						
	Sample							

Salvando o projeto:

Antes de salvar o projeto, verificar se existem erros.

Podemos observar que não existem erros.

Salvaremos o projeto como *LO_vag_bio*. O programa se encarrega de colocar a extensão (.LYT). Isto significa que qualquer edição do projeto pode ser efetuada diretamente no Proteus ARES, sem a necessidade de abrir o Proteus ISIS.

As figuras a seguir mostram a visualização 3D das placas.

ARES L	0_vag_	bio -	ARES	Profess	sional	
File	Output	View	Edit	Library	Tools	Technolog
	🕼 Print	 ar Sahi	ю.] 🖻 d'i

Clicar em 3D Visualization

Gerando arquivos Gerber:

Antes de gerar os arquivos Gerber, vamos nos certificar de que não existem erros de conectividade.

Os arquivos Gerber possuem todas as informações dos layers e da furação (Drill).

Conforme visto anteriormente não existem erros no DRC.

Basta clicar no ícone Connectivity Rulers Checker.

Se tudo estiver normal, não haverá nenhuma resposta ao clique do mouse.

Para gerar os arquivos Gerber, basta clicar no ícone Generate Gerber/Excellon Files.

eres l	0_vag_	bio -	ARES	Profes	sional				
File	Output	View	Edit	Library	Tools	Technology	System	Help	
	i 🔁 🔡		1		ų.	0 🖌		m +	∠ ×
▶		7			Gener	ate Gerber/E>	cellon File	:5	

Ao clicar no ícone será aberta uma janela CADCAM (Gerber and Excellon) Output.

A janela mostra os layers cujos arquivos serão gerados, inclusive arquivos de furação (Drill).

Vamos alterar:

- Resolução de 500 dpi para 1000 dpi
- Saída compactada com ZIP (Output to a single file?)
- Rodar visualização depois de completado (Run Gerber View When Done?)

A figura a seguir mostra as configurações adotadas para o presente projeto. É bom lembrar que essas configurações podem ser alteradas.

CADCAM (Gerber and Excellon) Output		? 🗙
CADCAM Output CADCAM Notes	on	
Filestem: LO_vag_bio Eolder: C:\Documents and Settings\EDGAR\Desktop' Output to individual TXT files? [] Output to a single ZIP file? []	\Proteus - tutorial\Projetos Proteus Automatically open output folder Automatically open ZIP file?	3
▲ayers/Artworks: ✓ Top Copper Inner 1 Inner 8 ✓ Bottom Copper Inner 2 Inner 9 ✓ Top Silk Inner 3 Inner 10 Bottom Silk Inner 4 Inner 11 ✓ Top resist Inner 5 Inner 12 ✓ Bottom Resist Inner 6 Inner 13 Top Mask Inner 7 Inner 14 Bottom Mask Mech 1 Mech 3 ✓ Drill Mech 2 Mech 4 ✓ Edge (will appear on all layers) Apply Global Guard Gap 5th ▲II None ▲II None	Botation: Reflection:	on: I prmat: ID IX
	<u>0</u> K	<u>C</u> ancel

Ao clicar em OK abrirá uma janela com um resumo do que será visualizado

Gerber View			? 🔀
File: C:\\Proteus - tu	utorial\Projetos Prote	us\LO_vag_bio - CADC/	AM
	<u>L</u> .	ayers:	
Top Copper	Inner 1	Inner 8	Mech 1
Bottom Copper	Inner 2	Inner 9	Mech 2
🔽 Top Silk	Inner 3	inner 10	Mech 3
Bottom Silk	Inner 4	Inner 11	Mech 4
🔽 Top resist	Inner 5	Inner 12	
Bottom Resist	Inner 6	Inner 13	
Top Mask	inner 7	inner 14	
Bottom Mask			
🔽 Drill		<u> </u>	II <u>N</u> one
Panelization mode?		<u>0</u>	K <u>C</u> ancel

Clicar em OK e a geração dos arquivos será completada, conforme mostra a figura abaixo:

A partir daí, podemos visualizar cada um dos layers clicando no ícone Edit Layer Colours/Visibility

Technology System Help
() 🖻 🕼 🌐 🍢 m + 🖄 💠 🔍 🔍 🧐
Edit Layer Colours/Visibility

A figuras a seguir mostram a visualização do TOP SILK e do BOTTOM COPPER.

Observe que para ambos a visualização da borda (contorno da placa) está ativada.

A figura a seguir mostra os arquivos CADCAM previamente compactados.

🗐 V	VinZip P	Pro - L	0_va	g_bio - (CADCAM.Z	IP					
File	Actions	View	Jobs	Options	Help						
Ž		E	1	P	E	(P	P	6	> 🍪	Ì	
P	lew	Open	F	avorites	Add	Extract	Encrypt	Viev	v CheckOut	Wizard	Viev
Nam	e						Туре		Modified	S	ize
E	0_vag_bi	o - CAD	CAM T	op Copper	.TXT		Text Doc	ument	30/6/2013 20:4	8 8	807
🗐 LO_vag_bio - CADCAM Bottom Copper.TXT				Text Doc	Text Document 30/6/2013 20:48			18			
🗐 LO_vag_bio - CADCAM Top Silk Screen.TXT				Text Doc	Text Document 30/6/2013 20:48			10.461			
🗐 LO_vag_bio - CADCAM Top Solder Resist.TXT				Text Doc	Text Document 30/6/2013 20:48		8 8	807			
🗐 LO_vag_bio - CADCAM Bottom Solder Resist.TXT				Text Doc	Text Document 30/6/2013 20:48		8 8	807			
🗐 LO_vag_bio - CADCAM Drill.TXT				Text Doc	Text Document 30/6/2013 20:48		8 4	85			
LO_vag_bio - CADCAM READ-ME.TXT					Text Document 30/6/2013 20:48 2.113			13			

Dimensões da placa de CI:

Através da janela das coordenadas X e Y, localizada no canto inferior direito da área de trabalho, podemos medir com precisão o tamanho da placa.

Em Thou ou em milímetros respectivamente:

Para converter de Thou para milímetro, basta teclar "M".

<u>rres</u> l	0_vag_	bio -	ARES	Profess	sional		
File	Output	View	Edit	Library	Tools	Technolog	зy
	iii 🔁 🔡	🙋 R	edraw		R		1
		⊿ ⊾ E	ip		F		
		E G	rid		G		ļ.
≯	918 1	La	ayers		Ctrl	+L	
		m	etric	N	М		\square
2		+ 0	rigin	μġ	0		

Vamos então medir a placa, cujo tamanho é representado pela borda ou contorno em amarelo.

Para isso vamos criar um ponto de origem no canto superior esquerdo.

Para criar um ponto de origem 0,0 basta clicar no ícone Toggle False Origin ou simplesmente, posicionar o cursor no canto superior esquerdo e teclar a letra "O".

Veja as figuras a seguir:

Procedendo a medição:

Largura = 1400th ou 35,56mm

Altura = 1350th ou 34,29mm

Podemos dizer então que o tamanho real dessa placa é de aproximadamente 3,6 x 3,4 cm.

OBS: O ponto de origem criado é chamado ponto de origem falso, ou seja, as coordenadas são forçadas para 0,0 em qualquer parte da área de trabalho. Para desfazer o ponto de origem basta clicar no ícone correspondente ou teclar a letra "O".

A figura a seguir mostra o ponto de origem falso criado através do ícone:

Imprimindo o projeto:

O projeto pode ser impresso em uma impressora convencional, sem maiores dificuldades. Basta apenas fazer as configurações adequadas.

A figura abaixo mostra a janela de configuração para impressão:

RRES L	O_vag_bio - ARES Prof	essional	
File	Output View Edit Librar	ry Tools Technology System	
	Print		
Print Layout			? 🛛
HP Officejet Pro 8100 (USB001) <u>M</u> ode: Artwork <u>Layers/Artworks:</u> Top Copper Inner 1 Bottom Copper Inner 2 Top Silk Inner 3	Printer Eilename ✓ Scale Inner 8 Inner 9 Inner 10 150%	Uptions: Colour Set: BLACK_PAPER Labcenter Plotter Driver? eparate Pages? Copies: 1 € Botation: Reflection: ♦ X Horizontal Normal ♦ X Vertical Mirror	
Bottom Silk Inner 4 Top Resist Inner 5 Bottom Resist Inner 6 Top Mask Inner 7 Bottom Mask Mech 1 Drili Mech 2 Board Edge <u>A</u> II	Inner 11 200% Inner 12 200% Inner 13 400% Inner 14 500% Mech 3 C:\V None C:\V	Compensation Factors: Note: these are not traditional scaling factors! X: 1 Y: 1 Print To Eile? LO_vag_bio.PRN Eilename	
Advanced Options 💌		<u> </u>	

A escala 100% representa o tamanho real (1:1).

Observa-se na figura acima, que foi selecionado para impressão o layer BOARD EDGE e TOP SILK.

Seguindo o mesmo raciocínio é possível selecionar outros layers.

É possível ainda optar por impressão normal ou "mirror", sendo esta última muito útil quando se imprime o layer BOTTOM COPPER.

PLACA DE CI DE UM AMPLIFICADOR DE TENSÃO (PEQUENOS SINAIS)

O circuito a seguir mostra um amplificador de tensão, também denominado préamplificador universal, por ser muito usado como módulo entre uma fonte de sinal e um módulo de potência. O primeiro passo é desenhar o circuito no ISIS.

Os procedimentos são iguais aos adotados no exemplo anterior, porém, a única diferença é que faremos um roteamento automático deste projeto (Auto-router).

A imagem a seguir mostra o esquema mais detalhado.

A figura a seguir mostra a lista dos componentes e respectivos PCB Packages. O circuito foi salvo como *LO_amp_univ*

Para visualizar essa lista, basta clicar no ícone Design Explorer na barra de menus.

▧҂▰ᄽ║◪	#1 🖓 🖳 🗗 💥 🏞 🛭 🖻 🖉 🛄

LO_amp_univ - Physical Par	tlist View			
ן אין אין אין אין אין אין אין אין אין אי	Reference	Туре	Value	Circuit/Package
	⇒ - C1	CAP-ELEC	2.2uF	ELEC-RAD10
	⇒ C2	CAP	1.8nF	CAP10
	⇒ C3	CAP	4.7nF	CAP10
	=> C4	CAP-ELEC	47uF	ELEC-RAD10
	‡}- C5	CAP	100nF	CAP10
	‡} - J1	SIL-100-02	SIL-100-02	SIL-100-02
	‡} -J2	SIL-100-02	SIL-100-02	SIL-100-02
	I=D-13	SIL-100-02	SIL-100-02	SIL-100-02
	⊅ - Q1	BC549	BC549	T092/18
	 ⊅ - Q2	BC548	BC548	T092/18
	⊅ - R1	RES	2k7	RES40
	⊧ ≻ R2	RES	220k	RES40
	⊧ ≻ R3	RES	12k	RES40
	⇒ R4	RES	56k	RES40
	⊧ ≻ R5	RES	680R	RES40
	⊧ ≻ R6	RES	1k5	RES40
	 ⊅ R7	RES	330k	RES40
	‡}- R8	RES	56k	RES40
	‡ ≻ R9	RES	220R	RES40

A figura a seguir mostra que não há erros em ERC, e assim sendo podemos dar prosseguimento ao projeto.

isis ELECTRICAL RULES CHECK - ISIS Professional
ELECTRICAL RULES CHECK REPORT
Design: C:\Documents and Settings\EDGAR\Deskt Doc. no.: <none> Revision: <none> Author: <none> Created: 20/01/13 Modified: 01/07/13</none></none></none>
#I:Compiling design 'C:\Documents and Settings\ %C=0002,00000003
Netlist generated OK. No ERC errors found.

Caso exista algum erro no projeto, ao exportar a Netlist para o Proteus ARES será exibida uma mensagem com as informações para a devida correção.

Vamos aqui simular um exemplo de erro para entender melhor.

Se digitarmos 12V ao invés de +12V para o valor da fonte, ao exportar a Netlist, ocorrerá uma notificação de erro conforme mostram as figuras a seguir, embora a ERC esteja normal, ou seja, não apresenta informação de erros.

NETLIST ERRORS Message Compiling design 'C:\Documents and Settings\EDGAR\Desktop\Proteus - tutorial\Projetos Proteus\L0_amp_univ.DSN'. No power supply specified for net <u>12V</u> in Power Rail Configuration.

Observa-se então que, um pequeno detalhe impedirá a continuação do projeto.

Basta editar o componente, fazer a correção e salvar o projeto para dar a continuidade, exportando a Netlist para o Proteus ARES.

Vamos exportar a Netlist para o Proteus ARES e vamos optar pelo layout DEFAULT e em seguida clicar OK.

Lembrando que o ícone Component Mode deve estar ativado.

Vamos iniciar o posicionamento dos componentes na área de trabalho, lembrando que o layer é TOP SILK.

Vamos posicionar os componentes com Snap = 25th.

A figura a seguir mostra os componentes posicionados e a identificação dos conectores J1 (entrada do sinal), J2 (alimentação) e J3 (saída do sinal), identificação da placa e reposicionamento de alguns labels.

Vamos inserir na placa quatro furos de fixação, com diâmetro interno de 3mm.

Clicar no ícone Round Through-hole Pad Mode e selecionar C-200M3, conforme ilustra a figura a seguir:

A figura acima mostra a placa com as ilhas de furação para fixação da placa e o seu contorno. Lembrar que o contorno deve ser feito com o layer BOARD EDGE.

Como se trata de furo para fixação, quando o Pad é selecionado, automaticamente o Layer Selector muda para ALL, pois se subtende que a furação afeta todos os layers da placa de CI.

Como ainda não foi feito o roteamento, ao clicar no ícone Connectivity Errors, aparecerá uma janela mostrando todas as ligações a serem feitas. Essas ligações são mostradas pelos ratsnests (linha verde).

	Ma U2 🔀	kt 🖌 🗌		
H	Connectivity	y Errors		
	Error Type	1st Pin	2nd Pin	
	Missing	Q1:2	R7(1	
	Missing	C1:+	Q1:2	
	Missing	Q1:1	R2:1	
	Missing	Q1:1	Q2:2	
	Missing	Q1:3	R5:1	
	Missing	Q1:3	R4:1	
	Missing	R4:1	C2:1	
	Missing	C3:2	R3:1	
	Missing	C2:2	Q2:1	
	Missing	Q2:1	C3:2	
	Missing	Q2:1	C5:1	
	Missing	R6:1	R7:2	
	Missing	Q2:3	R7:2	
	Missing	J1:2	R1:1	
	Missing	J1:2	R8:1	
	Missing	C1:-	R1:2	
	Missing	R2:2	R3:2	
	Missing	R9:2	C4:+	
	Missing	R3:2	R9:2	
	Missing	R4:2	C3:1	
	Missing	J3:1	C5:2	
	Missing	R9:1	J2:1	
	Missing	⊂4:-	32:2	
	Missing	J3:2	C4:-	
	Missing	R5:2	R6:2	
	Missing	R6:2	J3:2	
$\left \right $	Missing	R5:2	R8:2	
L)	Missing	J1:1	R8:2	
T.				

Quando for feito o roteamento e se não houver erros, esse ícone simplesmente não responde ao clique do mouse.

Medindo a placa:

Conforme visto no projeto anterior podemos medir a placa, criando um ponto de origem a partir de uma das extremidades da mesma, correr o cursor no sentido X e Y e determinar as dimensões da mesma.

Convertendo de milímetros para centímetros, a placa terá uma dimensão de 7 x 3,9cm.

Roteamento automático (Auto-router):

Para proceder ao roteamento automático devemos configurar alguns parâmetros e definir onde será feito o mesmo. No nosso projeto o roteamento será feito apenas em uma face no layer BOTTOM COPPER.

Clicar no ícone Design Rule Manager:

Design Rule Manager
Bule Name DEFAULT New Rename Delete
Create New Design Rule
Name: PRE_UNIV
<u>□</u> K <u>Cancel</u> nce: 10th

Na aba Design Rules, vamos dar um nome (opcional) para Rule Name, no caso, PRE_UNIV. A configuração mais importante está na aba Net Classes, onde será definido o layer de roteamento.

Design Rule Manager 🛛 ? 🔀					
Design Rules Net Classes Defaults					
Net Class POWER	<u>N</u> ew Rena <u>m</u> e <u>D</u> elete				
SIGNAL Routing Styles	Layer Assignment for Autorouting				
Irace Style DEFAULT	Pair 1 (Hoz: Top Copper 💌				
<u>N</u> eck Styl∈ (None)	(Vert): Bottom Copper 💌				
Via Style DEFAULT Via	Pair 2 (Hoz None)				
,	(Vert): (None)				
Via Turan Baharat Dialan	Pair 3 (Hozi 🗌 (None) 💌				
Via Type: Ratsnest Display:	(Vert): (None)				
Top Plind Colour	Pair 4 (Hoz; 🔲 (None) 💌				
Bottom Blind	(Vert): (None)				
Buried	Priority: 1				
<u> </u>					

Observe que em Net Class temos podemos configurar em qual layer será feito o roteamento de POWER (alimentação, terra ou VCC) e de SIGNAL (interligação entre os componentes).

Vamos definir para o layer BOTTOM COPPER a largura da trilha como T40.

Design Rule Manager 🛛 ? 🔀					
Design Rules Net Classes Defaults					
Net Class POWER	New Rename Delete				
Routing Styles	Layer Assignment for Autorouting				
Trace Style T40	Pair 1 (Hoz] (None)				
Neck Style (None)	(Vert): Bottom Copper 💌				
Via Style DEFAULT ▼	Pair 2 (Hoz) (None)				
	(Vert): (None)				

Para a o mesmo layer, o BOTTOM COPPER, uma largura de T30 para SIGNAL.

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class SIGNAL	New Rename Delete
Routing Styles	Layer Assignment for Autorouting
Irace Style T30	Pair 1 (Hoz] 🔲 (None) 💌
Neck Style (None)	(Vert): Bottom Copper 💌
Via Style DEFAULT ▼	Pair 2 (Hoz] (None)
	(Vert): (None)

T30 e T40 é a mesma coisa do que 30th e 40th respectivamente. Basta agora clicar no ícone Auto-router

Não vamos modificar nada na janela que aparece e clicar em Begin Routing. Iniciará então o processo de roteamento automático.

Shape Based Auto Router ? 🔀						
Exec Run basic schedule autor Fanout Passes: 5 Routing Passes: 50	cution Mode: atically Repeat <u>P</u> hases: 1 <u>F</u> ilter Passes: 5	Begin Routing Export Design File				
<u>Cleaning Passes:</u> 2	Recor <u>n</u> er Pass: Yes 💌	Import Session File				
Run specified DO file automatically Browse Enter router commands interactively Launch external copy of ELECTRA.						
Wire Grid: 25th	Reset to <u>D</u> efaults					
✓ Allow off grid routing?	✓Allow off grid routing? ✓Allow off grid routing?					
Enable autonecking?	show as design faite violations.	<u>C</u> ancel				

A figura a seguir mostra o roteamento concluído.

Para confirmar se tudo está em ordem, clicar no ícone Connectivity Rules Checker:

📲 🗮 🗛 👯	<u></u>
	Connectivity Rules Checker

Se não houver nenhuma resposta, significa que tudo está em ordem.

Caso se deseje quebrar mais os ângulos das trilhas, aplica-se a ferramenta Mitre, com os ajustes adequados. Quando ocorre o roteamento automático o padrão (default) para Maximum Distance é de 0.1in e para Minimum Distance é 5th.

Para acionar, na barra de comandos:

Duplicate Layer... JЗ 01 02 New Component C R1 R2 <u>M</u>itre... R3 R4 Unmitre... R5 Tid<u>y</u>... R6 $\mathbf{P7}$

Edit – Mitre

A figura abaixo mostra o Mitre ajustado para 0.2in em Maximum Distance.

Veja em detalhes:

Aplicando-se o comando Unmitre, o ângulo de roteamento será de 90 graus.

Visualização 3D:

Roteamento automático com área de chapado para interligação do GND (terra):

Vamos utilizar no mesmo circuito, uma área de chapado para interligação dos pontos comuns de terra (GND). Adotar o procedimento visto no projeto anterior, ou seja, clicar no ícone Zone Mode e aplicar moldura no circuito conforme ilustra a figura. A largura das trilhas será configurada no Design Ruler Manager.

	Edit Zone			? 🛛
2 2	<u>N</u> et:	GND=POWER		•
	Layer/Colour:	Bottom Copper	•	Normal
	<u>B</u> oundary:	DEFAULT	•	Custom:
Zone Mode	<u>R</u> elief:	RELIEF	-	
H RELIEF	<u>Т</u> уре:	Empty	-	<u>S</u> tep: 25th
• T10 T12	Cle <u>a</u> rance:	10th 🚍		
	Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	 Supress Islands: Allow Nesting: 		<u>]</u> K <u>C</u> ancel

Observe na figura a seguir que o chapado não está sendo traçado exatamente sobre a borda, como no projeto anterior.

Início	

Configurando:

1) Clicar no ícone Design Rule Manager

2) Clicar na aba Rule Name e digitar um nome (opcional).

Veja a figura a seguir:

Design Rule Manager	?
Design Rules Net Classes Defaults	
Rule Name DEFAULT	
Apply to Lower Classances	_
Image: Name: PRE_UNIV 10th Image: Name: PRE_UNIV e: 10th	1
(All Clas	1
Graphics Clearance: 15th	1

3) Na aba Net Classes configurar conforme figuras a seguir:

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class POWER	New Rename Delete
Routing Styles	Layer Assignment for Autorouting
Irace Style T40 ▼	Pair 1 (Hoz) (None)
Neck Style (None)	(Vert): Bottom Copper 💌
Via Style DEFAULT ▼	Pair 2 (Hozi (None)

Design Rule Ma	inager		? 🔀			
Design Rules Net Classes Defaults						
Net Class SI	GNAL	New	Rena <u>m</u> e <u>D</u> elete			
	Routing Styles	Layer Ass	signment for Autorouting			
<u>T</u> race Style	T30 💌	Pair 1 (Hoz]	(None)			
<u>N</u> eck Style	(None)	(Vert):	Bottom Copper 💌			
<u>V</u> ia Style	DEFAULT	Pair 2 (Hoz]	(None)			
		(Vert):	(None)			

4) Iniciar o roteamento

Shape Based Auto Router		? 🔀
Exe Run basic schedule auton Fanout Passes: 5 Routing Passes: 50 Cleaning Passes: 2 Run specified D0 file auton Enter router commands int Claunch external copy of E Design Rules:	cution Mode: natically Repeat Phases: 1 Filter Passes: 5 Recorner Pass: Yes matically Browse eractively LECTRA Conflict Handling:	Begin Routing Export Design File Import Session File
Wire Grid: 25th ⊻ia Grid: 25th ✓ Allow off grid routing? ✓ Enable autonecking?	Treat conflicts as missings Load conflicts as illegal tracks Illegal tracks will flash yellow and show as design rule violations.	Reset to <u>D</u> efaults <u>H</u> elp <u>C</u> ancel

5) Clique com o botão direito do mouse sobre a linha que forma o chapado, para editá-la. Selecione a opção Solid e clique em OK.

Edit Zone		? 🛛
<u>N</u> et:	GND=POWER	•
Layer/Colour:	Bottom Copper	Dimmed
<u>B</u> oundary:	DEFAULT	Custom:
<u>R</u> elief:	RELIEF	•
<u>T</u> ype:	Empty	
Cle <u>a</u> rance:	Solid Outline	
Relieve <u>P</u> ins:	Hatched	
E <u>x</u> clude Tracking:	Compatible	

6) Clique em qualquer parte da área de trabalho.

A figura a seguir mostra a visualização do lado cobreado, ou seja, o lado da solda, onde se pode observar a diferença em relação ao lado cobreado sem a aplicação da área do chapado, conforme mostrado nas páginas 44 e 46.

Veja na figura abaixo uma pequena área com Zoom.

Salvar o projeto.

O programa se encarrega de colocar a extensão (LYT).

Gerando arquivos Gerber:

Os procedimentos são idênticos aos adotados no projeto anterior. Veja nas figuras a seguir as configurações.

Vamos gerar arquivos Gerber para a placa com área de chapado.

CADCAM (Gerber and Excellon) Output
CADCAM Output CADCAM Notes
Filestem: LO_amp_univ Eolder: C:\Documents and Settings\EDGAR\Desktop\Proteus - tutorial\Projetos Proteus Output to individual TXT files? Automatically open output folder Output to a single ZIP file? Automatically open ZIP file?
Layers/Artworks: Botation: Reflection: ✓ Top Copper Inner 1 Inner 8 Ø Bottom Copper Inner 2 Inner 9 ✓ Top Silk Inner 3 Inner 10 Bottom Silk Inner 4 Inner 11 ✓ Top resist Inner 5 Inner 12 Ø Bottom Resist Inner 6 Inner 13 Top Mask Inner 7 Inner 14 Bottom Mask Ø Mech 1 Mech 3 Ø Drill Mech 2 Mech 4 Ø Edge (will appear on all layers) Slotting/Routing Layer: All None Ø Run Gerber Viewer When Done?
<u> </u>

A figura a seguir mostra um exemplo de um arquivo Gerber gerado para a furação (DRILL). Os arquivos Gerber possuem a extensão "txt".

📕 LO_amp_univ 💦 - CAI	OCAM Drill. TXT - Notepad
File Edit Format View Help	
M48 INCH T01C0.0400 T02C0.0300 T03C0.1181 %	
т01	
X-028000Y+0085	00
$x = 0.280001 \pm 0.095$ $x = 0.11750 \times \pm 0.052$	50
x-011750y+0042	50
X-010000Y+0122	50
X-010000Y+0112	50
т02	
X-029750Y+0120	00
X-025/50Y+0120	00
X-024/50Y+0095	00
X-U23/3UY+0095	
$x = 0.232301 \pm 0.077$ x = 0.22750 + 0.072	50

Para imprimir o projeto, basta seguir os mesmos procedimentos adotados anteriormente.

PLACA DE CI DE UM GERADOR DE CLOCK COM CIRCUITO INTEGRADO 555

Vamos utilizar placa dupla face e tecnologia SMD, com roteamento para os *packages* SMD no TOP COPPER e no BOTTOM COPPER para os *packages* discretos.

R1, R2, R3 = package 0805 P1 = trimpot = package TRIM_3214W CI 555 = package SO8 Q1 = package TO92/18 L1 = package LED Conectores J1, J2 = package SIL-100-02 C1 = package ELEC-RAD10

O Resistor variável P1, é um micro potenciômetro denominado *trimpot* cujo ajuste do valor da resistência é feito na parte superior do mesmo (TOP). É utilizado para ajustar a frequência do oscilador e normalmente esse ajuste é feito na fábrica, não havendo interferência direta do usuário.

Exportando Netlist para o Proteus ARES.

A figura a seguir mostra o Component Mode

Podemos ver também o Package Mode, clicando no ícone correspondente.

Posicionando os componentes: TOP SILK – Component Mode

Vamos fazer o roteamento automático nas duas faces, bastando para isso configurar o Design Rule Manager.

Os componentes SMD (Surface Mounted Device) são preferencialmente roteados no layer TOP COPPER.

Veja nas figuras a seguir os ajustes.

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Hule Name G_CLUCK _	<u>New</u> ; Hena <u>m</u> e <u>D</u> elete
Apply to Layer: (All Layers) Apply to Net Class: (All Classes)	Clearances Pad - Pad Clearance: 10th Pad - Irace Clearance: 10th Trace - Trace Clearance: 10th
Design Rule Manager	? 🔀
Design Rules Net Classes Defaults Net Class POWER	<u>N</u> ew Rena <u>m</u> e <u>D</u> elete
Routing Styles Irace Style DEFAULT Neck Style T12 Yia Style T20 T40 T50 Yia Type: T50 T60 Y	Layer Assignment for Autorouting Pair 1 (Hoz] Top Copper (Vert): Bottom Copper Pair 2 (Hoz] (None) (Vert): (None) Pair 3 (Hoz] (None) (Vert): (None)
Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class SIGNAL	<u>N</u> ew Rena <u>m</u> e <u>D</u> elete
Routing Styles <u>I</u> race Style DEFAULT ▼ <u>N</u> eck Style T8 T10	Layer Assignment for Autorouting Pair 1 (Hoz: Top Copper (Vert): Bottom Copper
Via Style 112 T15 T20 T25 Via Type: T30 T40	Pair 2 (Hoz; (None) (Vert): (None) Pair 3 (Hoz; (None) (Vert): (None) Vert): (None) Vert): (None) Vert): (None)

Iniciar o roteamento automático, clicando no ícone Auto-router. Veja nas figuras a seguir os detalhes do roteamento:

Observe no detalhe da figura a seguir um furo denominado VIA, que serve para interligar eletricamente componentes e trilhas entre os dois layers.

Ao longo do layout verifica-se a existência dos furos VIA (normalmente chamados de furos metalizados) com a finalidade de interligar eletricamente componentes ou trilhas entre os dois layers. Esses furos podem ser configurados quando o roteamento for automático ou manual, conforme ilustra a figura a seguir.

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults Net Class POWER	<u>N</u> ew Rena <u>m</u> e <u>D</u> elete
Routing Styles	Layer Assignment for Autorouting
Irace Style T40	Pair 1 (Hoz
Neck Style (None)	(Vert): Bottom Copper 💌
Via Style DEFAULT 💌	Pair 2 (Hoz: None)
DEFAULT	(Vert): (None)
Via Tupe V50	Pair 3 (Hozi 🔲 (None) 💌
Normal V70	(Vert): (None)
Top Blind	Pair 4 (Hozi 🔄 (None) 💌
Bottom Blind Hidden?	(Vert): (None)
Buried	Priority: 1
	<u> </u>

A figura a seguir mostra as opções da aba padrões (defaults), que podem ser alteradas conforme opções do projetista.

Design Rule Manager	×
Design Rules Net Classes Defaults	
Default <u>S</u> tyles:	
Neck Style: T10	
Relief Style: RELIEF	
Tolerances:	
Cur <u>v</u> e Tolerance: 1th	
Rule Check Tolerance: 1um	

As figuras a seguir mostram a visualização em 3D da placa de CI.

Após o roteamento, seja ele manual ou automático, é possível alterar o posicionamento dos labels em TOP SILK, se houver necessidade de melhorar a estética.

Isto não implica em novo processo de roteamento.

É possível também após o roteamento aplicar a área de chapado. As figuras a seguir mostram a aplicação da área de chapado para interligação dos pontos de terra (GND).

O layer deve ser TOP COPPER.

Edit Zone			2 🗙
<u>N</u> et:	GND=POWER		•
Layer/Colour:	Top Copper	▼ Normal	-
<u>B</u> oundary:	DEFAULT		
<u>R</u> elief:	RELIEF	•	
<u>Т</u> уре:	Solid	▼ <u>S</u> tep: 25th	
Cle <u>a</u> rance:	12th 😑		
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	 Supress Islands: Allow Nesting: 	✓ <u>□</u> K <u>C</u> ane	cel

A geração dos arquivos GERBER e a impressão seguem as orientações anteriores.

CADCAM (Ger	ber and	Excel	lon'	Out	nut
GADGAIN	001	Jei wille	LVCCI		, o uit	

CADCAM Output CADCAM Notes Output Generation LO_g_clock Filestem: C:\Documents and Settings\EDGAR\Desktop\Proteus - tutorial\Projetos Proteus 5 Folder: Output to individual TXT files? Automatically open output folder Output to a single ZIP file? Automatically open ZIP file? Layers/Artworks: -<u>R</u>otation: Reflection: 🔶 Normal Top Copper Inner 1 Inner 8 Inner 9 ♦ X Vertical Mirror Bottom Copper Inner 2 🗸 Top Silk Inner 3 Inner 10 INF File <u>U</u>nits: Gerber Format: Bottom Silk Inner 4 Inner 11 🔶 Imperial (thou) Top resist Inner 5 Inner 12 RS274D Bottom Resist Inner 13 Metric (mm) Inner 6 🔶 RS274X | Inner 14 Top Mask Inner 7 Auto Bottom Mask Mech 1 Mech 3 Slotting/Routing Layer: 🗸 Drill Mech 2 Mech 4 Edge (will appear on all layers) Mech 1 • Apply Global Guard Gap 5th Bitmap/Font Rasterizer: Resolution: 1000 dpi ΔII -None 6 Run Gerber Viewer When Done? <u>0</u>K <u>Cancel</u>

ierber View			? 🛛
File: C:\\Proteus - tu	utorial\Projetos Prote	us\LO_g_clock - CADC/	AM
	L	ayers:	
Top Copper	Inner 1	Inner 8	Mech 1
Bottom Copper	inner 2	inner 9	Mech 2
🔽 Top Silk	Inner 3	inner 10	Mech 3
Bottom Silk	inner 4	inner 11	Mech 4
Top resist	Inner 5	inner 12	
Bottom Resist	Inner 6	Inner 13	
🔽 Top Mask	Inner 7	Inner 14	
Bottom Mask			
🔽 Drill		A	ll <u>N</u> one
Panelization mode?		0	K. Cancel

O projeto foi salvo como LO_g_clock, lembrando que a extensão é colocada pelo próprio programa.

Os arquivos GERBER estão compactados devido a opção:

Output to a single ZIP file?

🗐 w	/inZip P	Pro - LO_	g_clock - C	ADCAM.ZI	Р					
File	Actions	View Jo	bs Options	Help						
Č					<u>ت</u>	B	9		I	Q
IN	ew	Open	Favorites	Agg	Extract	Encrypt	view	CheckUut	wizaro	view 50
Name	е					Туре	Mo	odified	Siz	e
E LC	LO_g_clock - CADCAM Top Copper.TXT				Text Doc	ument 6/7	/2013 11:06	144.08	8	
🗐 LC	LO_g_clock - CADCAM Bottom Copper.TXT			Text Document 6/7/2013 11:06		1.22	:6			
🗒 LO)_g_clock		4 Top Silk Scre	en.TXT		Text Doc	ument 6/7	/2013 11:06	9.73	:0
🗒 LO)_g_clock		1 Top Solder R	esist.TXT		Text Doc	ument 6/7	/2013 11:06	1.19	7
🗒 LO	LO_g_clock - CADCAM Bottom Solder Resist.TXT				Text Doc	ument 6/7	/2013 11:06	71	2	
🗐 LC)_g_clock		4 Top SMT Pas	te Mask.TXT		Text Doc	ument 6/7	/2013 11:06	66	6
🗐 LC)_g_clock		4 Mechanical 1	.TXT		Text Doc	ument 6/7	/2013 11:06	19	0
🗐 LO	E LO_g_clock - CADCAM Drill.TXT					Text Doc	ument 6/7	/2013 11:06	42	9
🗐 LC	_g_clock		4 READ-ME.TX	т		Text Doc	ument 6/7	/2013 11:06	3.21	7

PLACA DE CI DE UMA FONTE DE ALIMENTAÇÃO REGULÁVEL COM O CI LM317

A figura abaixo mostra o esquema modificado, uma vez que o transformador e o potenciômetro de ajuste da tensão de saída (P1) não serão soldados diretamente na placa de CI e sim, interligados através de conectores.

SW = interruptor simples

Netlist - No ERC errors

1515 L	O_fonteLM317 - ISIS	6 Profes	sional
File	View Edit Tools Des	ign Gra	ph Source Debug Library Template System Help
	r 🔚 🖓 🖓 😓		∄⊞ + +€€€€ .9°° %№₿ ΞΞ≣
▶ +	ولين <u>بالمالي</u>		
LBL			ELECTRICAL RULES CHECK - ISIS Professional
≠ ⇔ ⇔ ☆ 🖾 🕲 🔊 🔨 🔨	P L DEVICES 1N4004 ALTERNATOR CAP CAP-ELEC FUSE LED-YELLOW LM317T POT-HG RES SIL-100-02 SIL-100-03 SW-SPST-MOM TRAN-2P2S		ELECTRICAL RULES CHECK REPORT ====================================

Component Mode e Package Mode:

Ajustando as configurações para auto-roteamento, em face simples (BOTTOM COPPER):

As trilhas tanto para "SIGNAL" como para "POWER" serão ajustadas em T40.

A figura a seguir mostra o resultado do roteamento automático. A opção Mitre foi ajustada para 0.2in (Maximum Distance).

O projeto foi saldo como LO_fonteLM317.

Visualização 3D:

Medidas da placa: 84mm x 34mm (8,4 x 3,4cm)

Criando uma área de chapado para interligação dos pontos comuns de terra (GND):

Adotando os procedimentos anteriores vamos criar uma área de chapado para a interligação dos pontos comuns de terra no layer BOTTOM COPPER. Como a placa foi roteada, manter a padrão DEFAULT para as configurações de ZONE MODE.

Edit Zone		2
<u>N</u> et:	GND=POWER	· · · · ·
Layer/Colour:	Bottom Copper 📃 Normal	
<u>B</u> oundary:	DEFAULT	
<u>R</u> elief:	RELIEF	
<u>T</u> ype:	Solid Step: 25th	
Cle <u>a</u> rance:	12th 😑	
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: [Route to this Zone: [Supress Islands: Allow Nesting:	ancel

Clicar em OK.

É possível verificar a conectividade clicando no ícone Connectivity Highligth Mode:

A figura a seguir mostra como exemplo a verificação da "net" GND=POWER.

Isto significa que a área iluminada representa as ligações comuns de terra no circuito, ou seja, GND.

Esse processo pode ser repetido para qualquer "net".

Observa-se que os *Pads* destinados a furação para a fixação da placa, embora com contorno cobreado, não possuem nenhuma ligação elétrica.

Podemos interligar os 4 *Pads* ao plano de GND através da área de chapado. Isto às vezes pode ser muito útil se desejarmos que a placa de CI tenha uma conexão comum com o GND (terra) ou com o chassis ou mesmo com ambos.

Por exemplo, se parafusarmos a placa de CI com um parafuso metálico em um chassis também metálico, esta poderá estar em contato com o chassis através do terra que estará conectado ao PAD de furação.

Conectando os Pads de furação com o GND através da área de chapado:

Procedimentos:

1) No layout que já está pronto clicar com o botão direito do mouse na borda da área que delimita o chapado e clicar em Delete. Com isto será eliminada a área de chapado, mas não o roteamento.

Drag Object Edit Properties Move to	Ctrl+E	
C Rotate Clockwise	Num Num-+	b 👗 🛛
C Rotate 180 degrees	Ctrl+M	
Y-Mirror Gut To Clipboard		° ()

2) Editar o Pad. Para editar o Pad, aproximar o cursor no centro do mesmo e ao ser criada a área de foco ao redor do componente, clicar com o botão direito do mouse e em seguida Edit Properties:

OBS: o layer deverá estar configurado para COPPER BOTTOM, que é a origem do roteamento dessa placa. Ao aparecer a janela para a edição (Edit Single Pin) observe que o layer para o Pad é ALL e, portanto não alterar nada.

Edit Single P	in	?×	Edit Single P	in ? 🔀
Layers:	ALL	•	Layers:	ALL
<u>S</u> tyle:	C-200-M3	•	<u>S</u> tyle:	C-200-M3
<u>R</u> elief:	Default	•	<u>R</u> elief:	Default
<u>D</u> rill Hole:	Plated	•	<u>D</u> rill Hole:	Plated 💌
<u>N</u> et:	(None)	R	<u>N</u> et:	GND=POWER
<u>N</u> umber:	(None) GND=POWER	/4	<u>N</u> umber:	
🔲 Lock Positio	n? <u>O</u> K (Cancel	Lock Positio	on? <u>O</u> K <u>C</u> ancel

Somente alterar o campo Net para GND=POWER.

Observe que é criada a ligação elétrica entre o Pad e um ponto de terra (ratsnest).

3) Repetir o processo para os demais PADs.

4) Recriar a área de chapado para GND=POWER.

Edit Zone		?×
<u>N</u> et:	GND=POWER	
Layer/Colour:	Bottom Copper	Normal 🗨
<u>B</u> oundary:	DEFAULT	Custom:
<u>R</u> elief:	RELIEF	2
<u>T</u> ype:	Solid 💌	<u>S</u> tep: 25th 🚍
Cle <u>a</u> rance:	12th	
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	✓ Supress Islands: ✓ Allow Nesting:	OK Cancel
	Edit Zone Net: Layer/Colour: Boundary: Belief: Type: Clearance: Relieve Pins: Exclude Tracking: Route to this Zone:	Edit Zone Net: Layer/Colour: Boundary: DEFAULT Boundary: DEFAULT Relief: RELIEF Iype: Solid Clegrance: 12th Relieve Pins: Exclude Tracking: Allow Nesting: Route to this Zone:

Clicando no ícone Connectivity Highlight Mode, verifica-se agora que os Pads fazem parte da ligação elétrica da placa no plano GND=POWER.

A figura a seguir mostra a visualização 3D do lado cobreado, visto que somente este que sofre alterações.

Detalhe da ligação elétrica de um dos Pads:

Caso seja de interesse do projetista, o projeto poderá ser salvo com outro nome ou simplesmente atualizar.

Resta agora gerar os arquivos GERBER.

Como o projeto foi alterado (foi atualizado), surgirá uma mensagem alertando sobre essa alteração e ao mesmo tempo propondo uma verificação automática.

Clique YES (opcional) e será criado um relatório.

ADDE D	- familiar I	ה
ARES PI	rotessional	2
	The layout has been modified since the last pre-production check was run.	
2	Labcenter recommends running the pre-production check prior to generating files for board manufacture.	
	Do you wish to run the pre-production check now?	
	Yes No	
Pre-Prod	uction Check	×
Pre-pro	duction check start.	^
Date: d	:\Documents and Settings\LDGAR\Desktop\Proteus - tutc omingo, 7 de julho de 2013, 22:04:32	
PASS: O	onnectivity. onnectivity valid.	
PASS: 0	bject validity. bjects valid.	
PASS: N	o DRC errors.	
Imaging	Copper Layer TOP	
Imaging	Copper Layer II Copper Layer I2	
Imaging Imaging	Copper Layer I3 Copper Layer I4	
Imaging Imaging	Copper Layer IS Copper Layer I6	
Imaging Imaging	Copper Layer I7 Copper Layer I8	
Imaging Imaging	Copper Layer I9 Copper Layer I10	
Imaging	Copper Layer I11 Copper Layer I12	
Imaging	Copper Layer I13 Copper Layer I14	
Imaging	Copper Layer BOT	
PASS: N	o overlap detected.	
PASS: A	ll components placed.	
PASS: B	oard edge complete.	~
<		
	<u>C</u> lose	

A figura a seguir mostra a janela para as configurações. Basta seguir os mesmos procedimentos anteriores.

CADCAM (Gerber and Excellon) Output	? 🛛
CADCAM Output CADCAM Notes	[
Output Generation Filestem: LO_fonteLM317 Folder: C:\Documents and Settings\EDGAR\Desktop\Proteus - tu ◇ Output to individual TXT files? ◆ Output to a single ZIP file?	torial\Projetos Proteus 🔄 cally open output folder cally open ZIP file?
Layers/Artworks: Bottom Copper Inner 1 Inner 8 ✓ Top Copper Inner 1 Inner 9 ✓ Top Silk Inner 3 Inner 10 Bottom Silk Inner 4 Inner 11 ✓ Top resist Inner 5 Inner 12 ✓ Bottom Resist Inner 6 Inner 13 Top Mask Inner 7 Inner 14 Ø Drill Mech 1 Mech 3 ✓ Drill Mech 2 Mech 4 ✓ Edge (will appear on all layers) Mech 4 Apply Global Guard Gap 5th Sth ✓ Run Gerber Viewer When Done? Resolution	ation: Reflection: izontal tical Normal Itical Gerber Format: al (thou) (mm) RS274D RS274X Slotting/Routing Layer: ech 1 I 000 dpi I 000 dpi I 000 dpi
	<u>O</u> K <u>C</u> ancel

	<u>L</u> .	ayers:	
 Top Copper 	Inner 1	inner 8	Mech 1
Bottom Copper	Inner 2	Inner 9	Mech 2
🔽 Top Silk	Inner 3	Inner 10	Mech 3
Bottom Silk	Inner 4	Inner 11	Mech 4
Top resist	Inner 5	Inner 12	
Bottom Resist	Inner 6	Inner 13	
Top Mask	Inner 7	Inner 14	
Bottom Mask			
V Drill		A	II <u>N</u> one

A figura a seguir mostra as configurações para a impressão do projeto.

Print Layout	? 🗙
Printer: HP Officejet Pro 8100 (USB001)	Options: Colour Set: MONOCHROME Filename Labcenter Plotter Driver?
Mode: Artwork Layers/Artworks: Top Copper Inner 1 Inner 8 Bottom Copper Inner 1 Inner 9 Top Silk Inner 3 Inner 10 Bottom Silk Inner 4 Inner 11 Top Resist Inner 5 Inner 12 Bottom Resist Inner 6 Inner 13 Top Mask Inner 7 Inner 14 Bottom Mask Mech 1 Mech 3 Drill Mech 2 Mech 4 Board Edge <u>All</u> None	Separate Pages? Copies: Scale Botation: \$50% * Horizontal 100% * Vertical 150% Compensation Factors: 200% Note: these are not traditional scaling factors! \$500% ½: 1 ½: Print To File? GERBVIEW.PRN UK Cancel

Um detalhe interessante é que se torna possível definir o tipo de impressão em Options – Colour Set:

MONOCHROME

BLACK_PAPER

WHITE_PAPER

É possível então imprimir em B&P, cores com fundo branco ou fundo preto. Veja nas figuras a seguir o ajuste dessas opções:

Options:	
Colour Set: MONOCHROME	
Labcenter Plotter Driver?	
arate Pages? <u>C</u> opies: 1 Reflection:	
Options:	
Colour Set: BLACK_PAPER	
Labcenter Plotter Driver?	
arate Pages? <u>C</u> opies: 1 Reflection:	
Options:	
Colour Set: WHITE_PAPER	
Labcenter Plotter Driver?	
arate Pages? <u>C</u> opies: 1 <u>R</u> otation:	

PLACA DE CI DE UM SEQUENCIADOR DE 10 LEDs

Resistores = 1/4W Capacitores = 16V P1 = potenciômetro linear

Conforme mostra o diagrama esquemático a seguir, foi ligado em paralelo com P1 o conector J1, pois o potenciómetro será externo, permitindo a atuação do usuário no controle da frequência.

Caso o circuito seja simulado, J1 deverá ser excluído da simulação para não provocar erros.

Basta editar o componente e marcar a opção Exclude from Simulation, conforme ilustra a figura a seguir.

			*	-
J1 SIL-100-03	Exclude from <u>S</u> imulation Control Layout Edit <u>all properties</u> as text	Attach hierarchy <u>m</u> odule Hide <u>c</u> ommon pins		

Podemos então exportar a Netlist para o Proteus ARES. Ao exportar a Netlist aparece uma mensagem solicitando definir o PCB Package para o potenciômetro P1 (no Proteus ISIS = RV1).

Package Selector					? 🗙
Pac <u>k</u> age	88	<u>L</u> ibraries		Component	
41612-1R-B-R	CONN-E	CONNECTO 👗	Part:	RV1	
41612-2R-B-R	CONN-E	CONNECTO	Device:	POT-HG	
41612-2R-C-R	CONN-E	IPC7351BGA	Value:	150k	
BT-IDC-03 BT-IDC-04	CONN-E CONN-E CONN-E	PACKAGE SMTCHIP	<u>P</u> ackage:		
CONN-DIL8	CONN-E	Abort	<u>S</u> kip	Sa <u>v</u> e	<u>0</u> K

Essa mensagem poderá ser ignorada ou simplesmente, voltamos ao diagrama esquemático e configuramos P1 para ser excluído do PCB Layout, conforme ilustra a figura a seguir.

Clicar na tecla Abort para cancelar a operação de exportação da Netlist para o Proteus ARES.

RV1	Linear	
n n c	 Exclude from Simulation Attach hierar ✓ Exclude from PCB Layout ✓ Edit all properties as text 	c hy <u>m</u>odule n pins

A figura a seguir mostra o ícone Package Mode selecionado.

O ícone Component Mode selecionado é mostrado na figura a seguir.

Modificando um PAD:

Na placa de CI do presente projeto vamos acrescentar 4 ilhas (PADs) somente para furação com diâmetro de 3mm, ou seja, não há necessidade de contorno cobreado no furo.

Para isso, vamos modificar um componente já existente, o C-200-M3, que já foi usado em projetos anteriores. Estaremos assim criando um PCB Package.

Procedimentos:

- 1) Vamos usar o grid 25th, lembrando que 0,25in é igual a 250th.
- 2) Editar o componente.

+ Drag Object	
Edit Properties 🔪 Ctrl+E	A
Move to	\downarrow
Delete Object	

3) Configurar conforme ilustra a figura a seguir.

Edit Single P	in ? 🔀
Layers:	Drill Hole
<u>S</u> tyle:	C-200-M3
<u>R</u> elief:	Default
<u>D</u> rill Hole:	Unplated 💌
<u>N</u> et:	(None)
<u>N</u> umber:	3
🗌 Lock Positio	n? <u>OK</u> <u>C</u> ancel

Observe que o layer passa a ser Drill Hole, ou seja, apenas furação. Como se trata apenas de furação a característica passa a ser Unplated (não metálico).

No campo Number foi digitado 3 para representar o diâmetro.

4) Desenhar a área que delimita o diâmetro da cabeça do parafuso, sendo normalmente muito utilizado o diâmetro de 0,25in.

Para isso ajustar o ponto de origem em 0,0 com o cursor no centro do círculo e teclando a letra O.

5) Ativar o ícone 2D Graphics Circle Mode. O layer deverá ser TOP SILK.

Observe que do centro até a borda do círculo, o raio é de 125th, portanto, o diâmetro será de 250th ou 0,25in.

6) Selecionar o componente e clicar com o botão direito do mouse.

7) Selecionar a opção Make Package.

Place 🕨
Select All Objects Clear Selection Esc
Cut To Clipboard
Move to
📥 Block Copy 🛃 Block Move 🧐 Block Rotate
Block Delete Delete
Make 2D Graphics Symbol

8) Preencher a janela de diálogo conforme sugerido na figura a seguir.

Make Package	? 🔀
Indexing and Library Selection 3D Visualization New Package <u>N</u> ame: FURD M3	Save Package To Library:
Package <u>C</u> ategory: Miscellaneous	Jacobier Rd
Package <u>I</u> ype: Through Hole	
Package <u>Sub-category</u> : Other <u>▼ New</u>	
Package <u>D</u> escription: Fund 3mm	
Advanced Mode (Edit Manually)	
<u>H</u> elp	<u>O</u> K <u>C</u> ancel

Observe que o novo *package* será salvo na biblioteca USERPKG (default do programa), a menos que seja criada outra biblioteca.

É possível ainda visualizar o novo *package* em 3D, clicando na aba 3D Visualization. O modo de visualização está configurado em Spin, ou seja, o componente aparece se movendo em círculos.

Outras opções de visualização podem ser escolhidas:

Front Back Left Right

Ao clicar em OK esse novo *package* será incluído e visualizado em Mode Package.

Clicando em Library e Library Manager..., é possível ver o *package* incluído em USERPKG.

CONNECTORS				JUSENEKU
41612-1R-B-R 41612-2R-B-R	CONN-SIL18 CRIMP 03 1-25MM	PWR-02- PWR-02-	<u>O</u> rder	FURO M3
41612-2R-C-R 41612-3R-C-R	CRIMP 04 1-25MM CRIMP 06 1-25MM	PWR-03- PWR-03-	Select <u>A</u> ll	
BT-IDC-03 BT-IDC-04	CRIMP 08 1-25MM CRIMP 10 1-25MM	PWR-06 PWR-06	Unselect All	
CONN-DIL8 CONN-DIL10	CRIMP 12 1-25MM CRIMP 14 1-25MM	PWR-12- PWR-12-		
CONN-DIL14 CONN-DIL16	D-09-F-R D-09-F-S	PWR-24 PWR-24	Carry Itama	

Em Pick Packages é possível localizar também o *package*, que poderá ser usado em outros projetos. Observe as características do mesmo e a visualização do mesmo.

Keywor <u>d</u> s:	<u>R</u> esults (1):
furo m3	Device Library Description
Match <u>W</u> hole Words?	FURO M3 USERPKG Furo 3mm
<u>Category:</u> (All Categories) Miscellaneous	FURO M3 Preview:
<u>Type:</u> (All Types) Through Hole	

Daremos então continuidade ao projeto, inserindo os PCB Packages na área de trabalho. A figura a seguir mostra os detalhes da saída do sequenciador com a identificação dos leds e respectivos resistores. Isto facilitará o posicionamento dos componentes na área de trabalho, com a sua sequência correta.

Observe que foi acrescentado o conector J2 para a alimentação do circuito.

Normalmente quando a Netlist é exportada para o Proteus ARES é solicitado que o projeto seja salvo no Proteus ISIS. Vamos salvar como *LO_seq_10leds*.

A figura a seguir mostra os *packages* na área de trabalho, interligados pelos ratsnest. É bom lembrar que os *packages* devem ser inseridos com o layer TOP SILK.

Vamos agora definir o contorno da placa e inserir os 4 PADS para furação, usando o *package* criado para tal.

Borda ou contorno da placa – layer BOARD EDGE

Furos M3 – layer TOP SILK

Dimensões da placa:

3425th (87mm) x 2925th (74mm)

8,7 x 7,4cm

Vamos agora fazer o roteamento automático em face simples e para isso vamos usar o layer BOTTOM COPPER.

Configurando Design Ruler Manager:

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Rule Name SEQ_10_LEDS	<u>N</u> ew Rena <u>m</u> e <u>D</u> elete
Apply to Layer:	Clearances
(All Layers)	Pad - Pad Clearance: 10th 🚍
	Ded Trees Classes 100 -

Para "Net Classes" vamos configurar POWER= DEFAULT e SIGNAL = DEFAULT, conforme as figuras a seguir.

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class POWER	New Rename Delete
Routing Styles Irace Style DEFAULT Neck Style (None) Via Style DEFAULT	Layer Assignment for Autorouting Pair 1 (Hoz] (None) (Vert): Bottom Copper Pair 2 (Hoz] (None)
Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class SIGNAL	
	New Rename Delete
Routing Styles	New Rename Delete Layer Assignment for Autorouting
Routing Styles	New Rename Delete
Routing Styles Irace Style Neck Style	New Rename Delete

Podemos então iniciar o roteamento automático.

Shape Based Auto	o Router			? 🛛
Run basic sche Fanout Passes: Routing Passes: <u>C</u> leaning Passes:	Exec dule automa 5 50 2	ution Mode: atically Repeat <u>P</u> hases: <u>F</u> ilter Passes: Recor <u>n</u> er Pass:	1 5 Yes 💌	Begin Routing Export Design File
C Enter router commands interactively				
Design Rules	s:	<u>C</u> onflict Ha	andling:	1
Wire Grid: 25th ◆ Treat conflicts as missings ✓ia Grid: 25th ✓ia Grid: 25th ♦ Load conflicts as illegal tracks			Reset to <u>D</u> efaults	

O padrão ou DEFAULT de roteamento estabelecido pelo Proteus ARES é de 12th, ou seja, aproximadamente 0,3mm.

Observa-se na figura acima que todos os pontos foram roteados.

A escolha da largura do traçado ou trilhas depende muito do tipo do projeto, no que diz respeito as correntes e tensões que são desenvolvidas ou requeridas pelo circuito.

Assim, dependendo da corrente uma trilha de 12th pode ser inadequada, embora seja perfeitamente adequada para sinais.

As figuras a seguir mostram a visualização 3D do projeto.

Observe que os conectores J1 e J2 foram identificados com relação a polaridade da tensão de alimentação e um dos pontos de ligação do potenciômetro.

Essas informações adicionais podem ser feitas a qualquer momento, no layer TOP SILK.

Vamos utilizar o mesmo projeto e rotear automaticamente com trilhas de POWER = T40 e trilhas de SIGNAL = T30.

Observa-se na figura a seguir que alguns pontos não foram roteados, portanto, não estão conectados eletricamente.

Clicando no ícone Connectivity Rules Checker podemos observar que faltam 4 ligações e suas respectivas identificações.

	23 X X Col	nnectivity Rules Checker
Connectivit	y Errors	
Error Type	1st Pin	2nd Pin
Missing	U2:4	D4:A
Missing	U2:5	D5:A
Missing	U1:4	U3:5
Missing	U3:5	U2:16

Como resolver o problema?

Vejamos algumas sugestões:

1) Deixar como está e interligar os pontos através de fios (jumpers) no lado cobreado (BOTTOM COPPER).

Como são apenas 4 ligações é uma solução aceitável, para manter a largura das trilhas inalteradas.

2) Diminuir a largura das trilhas, no entanto, como dito anteriormente vai depender das tensões e correntes envolvidas no projeto.

3) Reposicionamento dos componentes. Um reposicionamento dos componentes pode ajudar principalmente onde existem "gaps" (espaços) que são disputados pelas trilhas.

Por exemplo, no meio de um CI a quantidade de trilhas que pode circular depende diretamente da largura das mesmas.

4) Há a possibilidade de se fazer um roteamento manual, configurando a largura das trilhas à medida que o mesmo é executado. Pode funcionar, mas é extremamente trabalhoso.

5) Finalmente, a solução mais profissional que é o roteamento em dupla face.

As figuras a seguir mostram o roteamento em dupla face (TOP COPPER e BOTTOM COPPER).

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class POWER	New Rename Delete
Routing Styles Irace Style T40 Neck Style (None) Via Style DFFALII T	Layer Assignment for Autorouting Pair 1 (Hoz: Top Copper (Vert): Bottom Copper Pair 2 (Hoz: (None)
Design Rule Manager	? 🗙
Design Rules Net Classes Defaults	
Net Class SIGNAL	New Rename Delete
Routing Styles Irace Style T30 Neck Style (None)	Layer Assignment for Autorouting Pair 1 (Hoz: Top Copper (Vert): Bottom Copper Pair 2 (Hoz: (None)

Outra opção para o roteamento em dupla face é usar o layer TOP COPPER somente para POWER e o layer BOTTOM COPPER somente para SIGNAL.

Veja como fica a configuração para NET CLASS:

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class POWER	New Rename Delete
Routing Styles	Layer Assignment for Autorouting
Trace Style T40	Pair 1 (Hoz] 📕 Top Copper 🗨
Neck Style (None)	(Vert): (None)
Via Style DEFAULT ▼	Pair 2 (Hoz 🔲 (None)
,	(Vert): 🔲 (None) 💌
) (a Turas — Datanast Disalau	Pair 3 (Hozj 🔄 (None) 💌
A N	(Vert): (None)
Normal	

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class SIGNAL	New Rename Delete
Routing Styles	Layer Assignment for Autorouting
Irace Style T30	Pair 1 (Hoz) 🔲 (None) 💌
Neck Style (None) ▼	(Vert): Bottom Copper 💌
Via Style DEFAULT ▼	Pair 2 (Hoz 🗌 (None) 💌
,	(Vert): (None)
	Pair 3 (Hoz) 🔄 (None) 💌
Marrype. Hatsnest Display.	(Vert): (None) 🔻

A figura a seguir mostra o resultado.

Podemos ainda criar uma área de chapado para o layer TOP COPPER configurando Net para POWER=GND. Vamos configurar o Clearence para 30th. Lembrando que, para criar a área de chapado deverá ser acionado o ícone Zone Mode.

A área de chapado pode ser criada mesmo depois de ocorrido o roteamento. Basta seguir as orientações dadas aos projetos anteriores.

Edit Zone	? 🛛
<u>N</u> et:	GND=POWER
Layer/Colour:	Top Copper 💌 Normal 💌
<u>B</u> oundary:	DEFAULT Custom:
<u>R</u> elief:	RELIEF
<u>Т</u> уре:	Solid 💽 Step: 25th 🚍
Cle <u>a</u> rance:	30th 😑
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	✓ Supress Islands: ✓ Allow Nesting: <u>①</u> K <u>①</u> Ancel

A figura a seguir mostra um detalhe ampliado de uma parte da placa em visualização 3D do layer TOP COPPER.

Para concluir o projeto, basta gerar os arquivos GERBER e imprimir, caso necessário.

Para gerar os arquivos GERBER e imprimir basta seguir os passos já vistos nos projetos anteriores.

Salvar o projeto. Sugestão: *LO_seq_10leds*, lembrando que as extensões são automaticamente colocadas pelo programa.

Para o Proteus ISIS = .DSN

Para o Proteus ARES = .LYT

CONSTRUÇÃO DE UMA PLACA DE CI A PARTIR DO PROTEUS ARES – FONTE DE ALIMENTAÇÃO REGULADA

É possível construir uma placa de CI (layout) a partir do Proteus ARES, sem a necessidade de executar o diagrama esquemático no Proteus ISIS.

Vamos construir o layout da placa de CI da fonte mostrada na figura abaixo, onde estaremos explorando novos recursos disponíveis no Proteus ARES.

Segue a lista de materiais. Os valores dos componentes foram calculados para uma saída regulada de aproximadamente 2,4V (corrente contínua) com uma tensão AC de entrada de 6V, para uma corrente de aproximadamente 0 a 120mA.

LISTA DE MATERIAIS

```
R1 = 150 \Omega 1/4W
R2 = 1k8 1/4W
R3 = 2k2 1/4W
R4 = 1k5 1/4W
R5 = 4k7 \ 1/4W
R6 = 39R \, 1W
R7 = 910 \Omega 1/4W
R8 = 2k2 \ 1/4W
C1 = 1.000 \mu F / 16V
C2 = 10 \mu F / 16 V
Q1 = Transistor 2N3055
Q2 = Transistor BC547B
U1 = Amplificador Operacional 741
D1=D2=D3=D4 = Diodo retificador 1N4001
D5 = Diodo led 5mm
D6 = Diodo Zener 2V4 / 500mW
2 conectores de 2 pinos, 1 para entrada AC outro para saída DC (Vout)
```

Para a lista de materiais apresentada o valor dos componentes na realidade não nos interessa, pois o PCB Package pode ser comum para muitos desses componentes como, por exemplo, diodos retificadores, leds, zener, alguns circuitos integrados, etc.

Para os resistores o PCB Package deve ser escolhido de acordo com a potência de dissipação. Para os capacitores, a escolha do PCB Package vai depender da sua capacitância e tensão de trabalho.

```
Iniciando a construção do layout:
```

Abrir o programa Proteus ARES.

Antes de iniciar o projeto vamos salvar o layout como LO_fntreg (sugestão).

RRES L	INTITLED - ARES Professional									
File	Output	View	Edit	Library	Tools	Technology	System	Help		_
Ď.	<u>N</u> ew Layou	ut								
6	Load Layo	ut							Ctrl+O	
	<u>5</u> ave Layo	ut							Ctrl+S	
	5ave Layo	ut <u>A</u> s		N						
	5ave Layo	ut As T	empla	tek						
	Clear Netli	<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
	Load Netlis									
	Save Netlik	st								
<u> </u>	saro nogi:									
:	[mport <u>D</u> XI	F								

Clicar no ícone Package Mode.

Ao clicar na letra P, estaremos abrindo a biblioteca dos PCB Packages, de forma muito semelhante ao que se executa no Proteus ISIS.

Vamos inserir na área dos *packages* o invólucro para o amplificador operacional 741. O 741 deste projeto é um AO de uso geral Dual-in-line com 8 pinos. No Proteus ARES é tratado como DIL, (abreviação de <u>D</u>ual <u>I</u>n <u>L</u>ine).

Digitando em *Keywords* – DIL, observa-se que os *packages dual in line* disponíveis aparecem listados.

IIII Pick Packages			
Keywor <u>d</u> s:	<u>R</u> esults (21):		
DIL	Device	Library	Description
Match Whole Words?	DIL04	PACKAGE	4 pin DIL IC, 0.3in width
<u>C</u> ategory:	DIL06 DIL08	PACKAGE PACKAGE	6 pin DIL IC, 0.3in width 8 pin DIL IC, 0.3in width
(All Categories)	DIL12	PACKAGE	12 pin DIL IC, 0.3in width
Connectors	DIL14	PACKAGE	14 pin DIL IC, 0.3in width
Integrated Circuits	DIL16	PACKAGE	16 pin DIL IC, 0.3in width
Miscellaneous	DIL18	PACKAGE	18 pin DIL IC, 0.3in width
	DIL20	PACKAGE	20 pin DIL IC, 0.3in width
1	DIL22	PACKAGE	22 pin DIL IC, 0.3in width
<u>T</u> ype:	DIL24	PACKAGE	24 pin DIL IC, 0.6in width
(All Tupes)	DIL24/28	PACKAGE	24/28 pin DIL IC, 0.6in width
Through Hole	DIL24NAR	PACKAGE	24 pin narrow DIL IC, 0.3in width
	DIL28	PACKAGE	28 pin DIL IC, 0.6in width
	DIL28NAR	PACKAGE	28 pin narrow DIL IC, 0.3in width
	DIL40	PACKAGE	40 pin DIL IC, 0.6in width
<u>S</u> ub-category:	DIL48	PACKAGE	48 pin DIL IC, 0.6in width
(All Sub-categories)	DIL56	PACKAGE	56 pin DIL IC, 0.6in width
Dual In Line	DIL64	PACKAGE	64 pin DIL IC, 0.6in width
	DIL72	PACKAGE	72 pin DIL IC, 0.6in width
	SPDIL24	PACKAGE	24 pin narrow DIL IC, 0.3in width
	SPDIL28	PACKAGE	28 pin narrow DIL IC, 0.3in width

Atente para os detalhes de Category (Integrated Circuits) e Sub-category (Dual In Line). Quanto ao Type a opção é *Through Hole*, isto é, trata-se de componente convencional (não SMD).

Os *data-sheets* dos fabricantes trazem obrigatoriamente a informação para identificação dos invólucros ou *packages*.

A figura a seguir ilustra a digitação do código DIL08, extraído do data-sheet.

🕮 Pick Packages			
Keywor <u>d</u> s:	<u>R</u> esults (1):	
DIL08	Device	Library	Description
Match Whole Words?	DIL08	PACKAGE	8 pin DIL IC, 0.3in width
<u>C</u> ategory:			
(All Categories)			
Integrated Circuits			

De posse das informações sobre os códigos usados para os *packages*, a tarefa de inseri-los na área de seleção de objetos se torna muito mais fácil.

A figura a seguir ilustra o DILO8, onde se observa que as distâncias entre os pinos, comprimento do componente, etc. é especificada em polegadas.

Lembrar que 0.1 in equivale a 1/10 de polegada.

Depois de selecionado o *package* desejado, clicar em OK e o mesmo estará disponível na área de seleção de objetos.

Eis mais um exemplo. Vamos selecionar mais um *package*, que se destina ao transistor 2N3055 (Q1 do projeto). Pelas informações do fabricante o invólucro do mesmo é o TO3, pois desejamos utilizar a versão metálica.

RE Pick Packages					
Keywor <u>d</u> s:	Results (5):				
ТОЗ	Device	Library	Description		
Match Whole Words?	SOT3 SOT93	PACKAGE PACKAGE	SOT3 power transistor package (same as TO3) SOT93 power transistor package (same as TO3-P)		
	T03	PACKAGE	TO3 power transistor package		
(All Categories) Discrete Components Integrated Circuits	T039 T03P	PACKAGE PACKAGE	T039 transistor package T03P plastic power transistor package		
		TO3 Prev	iew:		
Type: (All Types) Through Hole		4	0.428in		
<u>S</u> ub-category: (All Sub-categories) Transistors		1 18in			
			3		

Seguindo essas orientações podemos definir os PCB Packages para toda a lista de materiais do projeto.

Veja a seguir os PCB Packages definidos:

Resistores de 1/4W = RES40 Resistor de 1W = RES50 Capacitor C1 = ELEC-RAD25 Capacitor C2 = ELEC-RAD10 Diodos = DO41 Led = LED Transistor Q1 = TO92/18 Transistor Q2 = TO3 Circuito integrado U1 = DIL08 Conectores = SIL-100-02

A partir dos PCB Packages definidos, podemos dar início à construção do layout.

DICA: Para aumentar a área de trabalho a AREA DE SELEÇÃO DE OBJETOS OU COMPONENTES pode ser escondida (Auto hide).

- 1) colocar o cursor do mouse na área de seleção de objetos
- 2) com o botão direito do mouse selecionar (marcar) a opção Auto hide
- 3) a opção poderá ser revertida desmarcando a opção Auto hide

Inserindo os componentes na área de trabalho:

A inserção segue os mesmos procedimentos vistos anteriormente com a diferença de que o Package Mode deve estar ativo.

LAYER = COMPONENT SIDE (lado do componente)

Em *Package Mode* apenas dois layers ficam disponíveis: Component Side (lado do componente) e Solder Side (lado da solda).

Procurar inserir os objetos na mesma sequência do esquema, pois isto facilitará a criação das "nets". A criação das "nets" e sua identificação são importantes pois com isso, poderemos modificar a posição dos componentes para melhorar a estética ou até mesmo redimensionar a placa de CI. A figura a seguir mostra os PCB Packages inseridos e suas respectivas identificações.

Identificando os PCB Packages:

- O PCB Package deve ser identificado de acordo com o diagrama esquemático.
- 1) Selecionar e editar. A figura a seguir mostra a edição de D3.

2) Identificar (preencher ID), conforme figura a seguir.

	Edit Comp	onent	? 🗙
	Part <u>I</u> D:	D3	
DG	<u>V</u> alue:	1N4001	
	<u>P</u> ackage:	D041	
	<u>L</u> ayer:	Component Side	•
	<u>R</u> otation:	-180.0*	
	Lock Po	sition? ucials?	<u>C</u> ancel

3) Proceder da mesma forma para os demais packages.

Interligando os componentes:

Clicar no ícone Ratsnest Mode. A partir daí será criada uma "net" para cada ligação.

T NETS	
1 {NC}	
X {VOID}	
Ratsnest Mode	
0	

Valor interligar o A (anodo) e K (catodo) dos diodos D1, D2, D3 e D4.

Observe que automaticamente foram inseridas as NETS %00000 e %00001.

Proceder da mesma forma para os demais componentes.

À medida que os pontos são ligados vão se formando as "nets" que são identificadas pelas linhas verdes (ratsnests).

Isto significa que entre esses pontos existe uma conexão elétrica. Se essas linhas se cruzarem não tem nenhum problema, pois as mesmas identificam ligações elétricas entre pontos ou nódulos (nós).

Uma vez interligados os componentes podem ser reposicionados sem perda da conexão elétrica.

Observe que em Ratsnest Mode somente dois layers ficam disponíveis, o Top Copper e o Bottom Copper (por default: TOP COPPER). Nenhum problema, pois vamos criar apenas as "nets" que podem ser comum aos dois layers.

A figura a seguir mostra a "net" referente ao GND, identificada como %00001

ŕ	T NETS	
Ж	200001 {NC} {VOID}	
H		

Observe que foram identificados os pads para a inserção dos transistores (CBE – Coletor – Base - Emissor), lembrando que o layer é TOP SILK (vista top view). O pad quadrado do CI U1 indica o pino 1 (vista top view).

Nas figuras a seguir temos as ligações completadas e respectivas "nets".

•				
^	T NETO			
_	I NETS			
T	%00000			
<u>.</u>	200001			
Т	%00002			
ម	200003	—		
88	200004			
0	%00005			
<u> </u>	200006			
•	%00007			
•	200008			
U	200009			
•	200010			
	200011			
	(NC)			
Ξ.	Noin)			
	(1010)			
	1			

A figura a seguir mostra os componentes reposicionados, com as respectivas ilhas para furação, contorno e identificação do projeto.

Medidas da placa:

102mm x 49mm (10,2 x 4,9cm) ou

4025th x 1925th

O próximo passo é fazer o roteamento ou melhor dizendo, interligar os componentes através de trilhas. O roteamento poderá ser feito manualmente ou automaticamente.

Vamos dar um exemplo de roteamento manual para melhor conhecer alguns recursos do Proteus ARES. Vamos interligar manualmente todos os pontos comuns de terra (GND) do circuito. Clicar no ícone Track Mode.

Ao clicar no ícone surge uma caixa com várias opções de largura de trilha, inerentes ao programa, dentre as quais DEFAULT, BRIDGE, FANOUT e RELIEF.

DEFAULT – tem uma largura de traçado ou trilha de 12th. BRIDGE – tem uma largura de traçado ou trilha de 25th

Essas opções podem ser editadas bastando clicar no botão "E".

A figura a seguir mostra a edição da trilha (traçado) BRIDGE.

O traçado BRIDGE é ajustado por padrão para interligação de diodos em pontes retificadoras de tensão.

O traçado FANOUT com largura de 10th é usado para interligar saída e entradas de portas lógicas.

O traçado RELIEF está relacionado com alívio térmico quando é utilizado um plano de GND de interligação (área de chapado).

As figuras a seguir ilustram melhor esse conceito.

 $\mathsf{RELIEF} = \mathsf{T40}$

RELIEF é portanto a área de contato elétrico efetivo com o plano GND.

A área sem contato elétrico é denominada *alívio térmico*. Portanto, diminuindo o valor de RELIEF, aumentará a área de alívio térmico.

Vamos então, traçar manualmente os pontos de terra com largura 18th.

Observa-se que não existe disponível o traçado T18.

Vamos criar esse traçado ou trilha, clicando no botão "C" (Create).

O processo é bem simples, bastando preencher a janela de diálogo que surge.

Observe na figura à direita que ao clicar em OK, imediatamente fica disponível o traçado de 18th, nomeado como T18C.

Iniciando o traçado com T18C a partir de GND (conector J2).

A seta que surge é indicadora do sentido da "net". Ao ser completada a ligação entre o pino 2 de J2 e o pino 1 de R8 a linha "ratsnest" deve desaparecer.

A figura a seguir mostra as ligações comuns GND completadas.

Foi aplicada uma correção Mitre com Maximum Distance – 0.2in. Proceder de forma idêntica para a conexão dos demais componentes.

Roteando automaticamente:

A vantagem do roteamento automático é que além de ser mais rápido, permite também em caso de erros, a correção de posicionamento (reposicionamento) de componentes através do comando UNDO (ou simplesmente Ctrl+Z).

Vamos rotear com T40 no layer BOTTOM COPPER.

Design Rule Manager	
Design Rules Net Class	es Defaults
Rule Name DEFAUL	T <u>N</u> ew Rena <u>m</u> e
Create New Design	Rule ? 🔀
Name: FONTE RE	GULADA
	<u>OK C</u> ancel d'Clearance:
· ippij to <u>ri</u> o	ce Clearance:

Design Rule Manager	? 🛛
Design Rules Net Classes Defaults	
Net Class SIGNAL	New Rename Delete
	Layer Assignment for Autorouting
Irace Style T40 ▼	Pair 1 (Hoz: (None)
Neck Style RELIEF	(Vert): Bottom Copper 💌
Via Style DEFAULT 💌	Pair 2 (Hozi (None)

A figura a seguir mostra o roteamento automático onde se observa que uma ligação não foi completada.

Uma solução que no momento parece ser a mais óbvia é reposicionar o transistor Q2.

- Aplicar o comando UNDO ou Ctrl+Z.

- Reposicionar Q2 (layer deve ser TOP SILK).

- Reiniciar o processo de roteamento automático, mantendo as configurações anteriores. A figura a seguir mostra o resultado final.

Visualização 3D.

Tutorial **PROTEUS ARES PROFESSIONAL** – Design Suite – Prof. Edgar Zuim

O invólucro metálico do transistor 2N3055 é o coletor, logo, esse é o terminal do coletor desse transistor.

Assim sendo deverá ser colocado um parafuso metálico com porca, em qualquer um dos duros existentes na carcaça do transistor, para assegurar o contato elétrico entre a placa de CI e o coletor desse transistor.

Os dois furos normalmente estão ligados na mesma "net".

Alterando a largura das trilhas:

É possível modificar a largura do traçado ou trilha caso seja necessário.

Às vezes é necessário diminuir a largura de uma determinada trilha por questões estratégicas, principalmente no caso do roteamento manual.

É preciso analisar se a diminuição da largura dessa trilha não venha a prejudicar o funcionamento do circuito, principalmente se essa trilha for responsável pela alimentação de algum componente do circuito. O contrário também á válido, ou seja, uma trilha pode ter a sua largura aumentada.

A modificação de uma "net" pode ser feita em apenas alguns trechos ou na "net" inteira.

Para modificar a largura de uma trilha ou até mesmo alterar o seu posicionamento, basta clicar com o botão esquerdo do mouse sobre a mesma e com o botão direito, selecionar as várias opções existentes. Embora a seleção seja feita em apenas dois pontos específicos, pode afetar toda a "net" dependendo do modo como é feita a seleção (Selection Mode ou Connectivity Highlight Mode).

ATENÇÃO:

 1 – Quando a seleção é feita entre dois pontos no Selection Mode, somente esses dois pontos serão selecionados. Assim a alteração feita restringe-se a esses dois pontos.

2 – Quando a seleção é feita no Connectivity Highlight Mode, toda a "net" é afetada, qualquer que seja o ponto selecionado. Essa opção deve ser selecionada quando se pretende alterar a "net" inteira.

A figura anterior mostra dois pontos selecionados (Selection Mode) para alteração da largura da trilha de 40th para 50th.

Observe que somente entre esses dois pontos a largura foi alterada. Trata-se de dois pontos que estão dentro da net %00003.

Alterando a largura das trilhas de uma "net" inteira:

A título de exemplo vamos aumentar a largura de toda a "net" para T50, lembrando que a seleção deverá ocorrer em Connectivity Highlight Mode.

No entanto é preciso precaução, pois poderá ocorrer uma sobreposição de trilhas causando erros no layout.

A figura a seguir mostra que esse aumento de largura provocou uma sobreposição de trilhas, resultando em 9 erros apontados pelo DRC. Observe os círculos em vermelho.

	Design Rule	Errors			
	Design Rule	Violation Type	Layer(s)	Spec'd Clearance	Actual Clearance
1	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
ł	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
Ī	DEFAULT	PAD-TRACE	BOT	10.00th	7.78th
	DEFAULT	PAD-TRACE	BOT	10.00th	5.71th
-	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
1	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
I	DEFAULT	TRACE-TRACE	BOT	10.00th	5.00th
	•				
				9 DRC errors	

Portanto, deve-se ter cautela com relação a alteração da largura das trilhas, principalmente quando a mesma é aumentada.

VIAS E LAYERS (MULTILAYERS)

VIAS são ilhas (PADS) que asseguram um contato elétrico entre layers. Normalmente são mais utilizadas para contato entre os layers BOTTOM COPPER e TOP COPPER em placas de 2 camadas (lado de solda e lado de componente)

As VIAS também podem ser utilizadas para contato elétrico entre os layers "enterrados", ou seja, aqueles layers internos que ficam entre os layers BOTTOM COPPER e TOP COPPER (Inner), geralmente nas placas multilayers ou multicamadas.

Vamos supor uma condição hipotética mostrada a seguir, onde se deseja interligar o pino 2 de C1 ao pino 1 de C2 no layer COPPER BOTTOM e o único caminho é o indicado pela ratsnest.

O problema pode ser solucionado ligando-se um fio entre esses 2 pontos do lado da solda (BOTTOM COPPER)

No entanto, não é uma forma muito profissional para contornar o problema.

Uma opção para contornar esse problema de forma mais profissional é colocar 2 VIAS em pontos estratégicos, de forma a permitir a colocação de um "jumper" do lado dos componentes (TOP COPPER).

As VIAS são também conhecidas como furos metalizados já que seu furo interno sendo metalizado, permite o contato elétrico entre os layers.

Clicando no ícone Via Mode, temos várias opções.

As VIAS podem ser editadas e, portanto, seus valores podem ser modificados. A VIA padrão DEFAULT tem um diâmetro de 50th e um furo (DRILL) de 20th.

A inserção de uma VIA é simples, e funciona da seguinte forma:

1 – Se o roteamento estiver sendo feito no lado da solda (BOTTOM COPPER) no Track Mode, um duplo click do mouse muda o layer para TOP COPPER (lado do componente) até que outro duplo click seja dado, retornando ao layer anterior.

Basta observar a seta indicadora da direção da ratsnest.

Veja na figura a seguir como proceder.

1) Clicar no ícone Track Mode

2) Selecionar uma largura para a trilha

3) Iniciar o traçado até um ponto em que seja conveniente dar um duplo click para inserir uma VIA e continuar o traçado.

4) Terminado o traçado no layer oposto dar um duplo click para retornar ao layer de origem.

5) Terminar o traçado da "net".

A figuras a seguir mostram a VIA editada. Clicar com o botão direito do mouse sobre a mesma. Observa-se que o layer de origem foi o BOTTOM COPPER.

Observe o sentido: From (De) Top Copper – To (Para) Bottom Copper.

Não faz sentido alterarmos esses dois campos, no entanto é possível alterar o valor de "Style", que representa vários parâmetros da VIA.

A edição e modificação da VIA pode ser feita clicando no botão "E" (Edit).

7	CL				
Т	DEFAULT	Edit Circula	ir Pad Style		
ж	V40 V50	<u>N</u> ame:	V50		
<u>H</u>	V60 V70	<u>D</u> iameter:	50th 🚍		
	VOU	Drill <u>M</u> ark:	25th 🚍		
		Drill <u>H</u> ole:	20th 🚍		
Ĭ.		Guard <u>G</u> ap:	10th 🚍	Present 💌	
ō		<u>C</u> har	nges:		
		🔶 Local Ed	lit	<u>0</u> K	
		🔷 Update [Defaults	<u>C</u> ancel	
•					

Guard Gap é a área não coberta pela máscara de solda, podendo estar presente ou não.

Em Changes, se for aplicada uma alteração poderão ocorrer duas possibilidades:

Local Edit – somente disponível para o projeto corrente

Update Defaults – atualiza as configurações para ser usado em outros projetos

No Via Mode, clicando em Layer Selector observa-se que o layer ativo é ALL, indicando que a conexão é feita entre dois layers externos, no caso, TOP COPPER e BOTTOM COPPER.

ALL											
Blind-Top											
Blind-Bottom											
Buried											
	42	3 ⊅	- •	•	٩	8	1	κ 1	< *	<u>.</u>	

Criando um "jumper" no layer TOP COPPER:

Como no layer TOP COPPER para o circuito exemplo teremos apenas uma ligação, podemos optar por utilizar uma placa de face simples para o BOTTOM COPPER, interligando entre o pino 2 de C1 e 1 de C2 um "jumper" no lado dos componentes.

Podemos indicar nesses pontos, no lado dos componentes utilizando o layer TOP SILK a ligação de um "jumper".

Edit 2D Grap	hics Text					? 🛛
String:	ip1					
	Ju	stification:			Font Attributes:	
Horizontal:	🔶 Left	🔷 Cent	re < Right	Eont face:	Default Font	•
V.Vertical:	🔷 Тор	♦ Midd	lle 🔶 Bottom	<u>H</u> eight:	40th 💼	
	Grap	phic's Style:	:	Width:	30th	
<u>G</u> lobal Style:	DEFAULT	•	•	Bold?		
Line Wic	5th	-	Follow Global?	Italic?		
Colour:			∽ Follow Global?	Underline?		
	I			Strikeout?		
			Sar	nple		
E F	ABC	; a	ьс х>	′Ζ×	yz 123	
					<u> </u>	<u>C</u> ancel

Veja o aspecto na visualização 3D.

Como não teremos trilhas no lado dos componentes, a mesma será então substituída pelo "jumper".

Blind-Top e Blind-Bottom:

Supondo que queiramos ligar o pino 6 do CI U1, pelo layer BOTTOM COPPER até uma VIA que está em um layer interno, conforme sugere a figura a seguir:

Nesta VIA poderão estar várias outras ligações.

Se editarmos a via, conforme sugere a figura a seguir:

	•
Edit Via	? 🗙
Erom: <u>I</u> o:	Bottom Copper
 <u>S</u>tyle: 	V50
Net:	<none></none>

Teremos então um contato entre um layer externo no caso o BOTTOM COPPER a um layer interno, no caso Inner 1, daí então Blind-Bottom.

Observe a alteração da cor da VIA.

O mesmo é válido quando se deseja um contato entre o layer TOP BOTTOM com um layer interno, daí então Blind-Top.

Buried:

Neste caso o contato ocorre somente entre os layers internos.

Tomemos como exemplo, na figura a seguir, duas VIAS que serão configuradas para terem contato interno.

Configurando as duas vias para contato: From Inner 1 To Inner 2.

	- jp1 -	
_ _	Edit Via	? 🛛
- 🖉 o	<u>F</u> rom:	Inner 1
	<u>T</u> o:	nner 2
	<u>S</u> tyle:	V50 💌
	Net:	<none></none>
		<u>O</u> K <u>C</u> ancel

A figura a seguir mostra as duas VIAS sendo interligadas no layer Inner 1.

Observe a mudança das cores do traçado e das VIAS.

As VIAS (Buried) estão interligadas em uma camada interna no caso, layer Inner 1 e portanto não serão visíveis (nem a VIA e nem a trilha) em *3D Visualization*, conforme ilustram as figuras a seguir. Somente os dois furos serão visíveis.

Os PADS são ilhas destinadas a soldagem de componentes, e geralmente são fixados no lado da solda, embora possa também ocorrer soldagens no lado dos componentes.

O Proteus ARES oferece como default uma infinidade de PADS, no entanto qualquer um deles pode ser editado e modificado ou então, criado um novo PAD de acordo com as necessidades de um projeto

A figura a seguir mostra os tipos de PADS convencionais e SMD.

A figura a seguir mostra a edição do PAD C-100-60.

A figura a seguir mostra a edição de um PAD SMD, o 15X80.

PADSTACK MODE:

Uma característica do Padstack Mode é que as configurações de um PAD podem ser diferentes em cada layer.

Vamos considerar como exemplo uma placa com os layers Top e Bottom (lado dos componentes e lado da solda respectivamente). Vamos editar um já existente na biblioteca do Proteus ARES e vamos modificar as características no Bottom Side, clicando no botão "E" ou com botão direito do mouse e "Edit".

Edit Padstack					? 🗙
Name and Type:		<u>T</u> op Side:		Bottom Side:	
Style Name EX60Y60D32P	<u>C</u> opper:	C-60-32	<u>C</u> opper:	C-60-32	-
Drilled States at	<u>R</u> esist:	C-60-32	<u>R</u> esist:	C-60-32	•
SMT	<u>M</u> ask:	(None)	<u>M</u> ask:	(None)	~

Edit Padstack						? 🗙
Name and Type:		<u>T</u> op Side:			<u>B</u> ottom Side:	
Style Name EX60Y60D32P	<u>C</u> opper:	C-60-32	•	<u>C</u> opper:	C-60-32	•
Drilled Classed	<u>R</u> esist:	C-60-32	•	<u>R</u> esist:	C-60-32 C-70-30	^
	<u>M</u> ask:	(None)	-	<u>M</u> ask:	C-80-30 C-80-40	
Drill Hole:	Inner 1:	(0.1)	Inner L	ayers:	C-90-40 C-90-50 C-100-45 C-100-60	
Edit Padstack						? 🗙
Name and Type:		<u>T</u> op Side:			<u>B</u> ottom Side:	
Style Name EX60Y60D32P	<u>C</u> opper:	C-60-32	-	<u>C</u> opper:	C-100-45	-
Drilled Since 4	<u>R</u> esist:	C-60-32	•	<u>R</u> esist:	C-60-32	•
SMT	<u>M</u> ask:	(None)	V	<u>M</u> ask:	(None)	7

Vamos inserir esses PADS na placa que temos usado como exemplo e vamos rotear esses dois pontos no layer COPPER TOP.

Compare nas figuras a seguir as dimensões dos PADS em relação aos layers Top Side (C-60-32) e Bottom Side (C-100-45). Essa Ferramenta pode ser muito útil na construção de certos PCB Packages.

Observe que a área do lado da solda é bem maior, sendo portanto útil quando se deseja fixar um componente específico, como por exemplo, uma ponta de prova que exija melhor resistência mecânica.

FERRAMENTAS DE DESENHO 2D GRAPHICS

Basicamente são ferramentas comuns para o Proteus ISIS e para o Proteus ARES, com as mesmas técnicas de utilização.

São denominadas 2D Graphics Mode, incluindo Linha, Círculo, Box, Texto, Símbolos, Marcadores, etc. A figura a seguir mostra essas ferramentas e respectivos ícones.

As figuras a seguir mostram alguns exemplos de aplicações.

Text Mode							
Edit 2D Graphics Text							
String: 2D Graphis Text Mode							
	Justification:		Font Attributes:				
Horizontal:	🔶 Left 🛛 🔿 Centre 🔷 Right	Eont face:	Default Font	•			
V.Vertical:	🔿 Top 🔷 Middle 🔶 Bottom	<u>H</u> eight:	60th				
	Graphic's Style:	Width:	50th				
<u>G</u> lobal Style:	DEFAULT	Bold?					
Line Width:	Follow Global?	Italic?					
Colour:	Follow Global?	Underline? Strikeout?					
	San						
		/7 、	417 122				
HBC abc x/z xgz izs							
<u> </u>							

2D Graphics Symbols Mode

Em Symbols Mode estão disponíveis vários símbolos comuns ao Proteus ARES e ao Proteus ISIS em SYSTEM (Source).

Símbolos criados pelo usuário devem ser salvos preferencialmente em USERSYSTEM.

Clicando no botão "P" abre a biblioteca disponível.

Clicando no botão "L" abre o gerenciamento da biblioteca de símbolos.

🕮 Symbols Librari	es Manager			
Dest'n:				Source:
SYSTEM		-		SYSTEM
\$AUDIOGEN \$DCGEN	\$HDLGEN \$IPROBE	\$PIN \$PIN	<u>O</u> rder	\$AUDIOGEN \$DCGEN
\$DCLOCK0 \$DCLOCK1	\$MKRBUSNODE \$MKRDECREMENT	\$PIN \$PIN	Select <u>A</u> ll	\$DCLOCK0 \$DCLOCK1
\$DEDGE0 \$DEDGE1	\$MKRINCREMENT \$MKRLABEL	\$PIN \$PIN	Unselect All	\$DEDGE0 \$DEDGE1
\$DIGGEN \$DPULSE0 *DPULSE1		\$PIN \$PIN ¢PI II		\$DPULSE0
\$DRILL00 \$DBILL01	\$MKRORIGIN \$MKRPINNAME	\$PW \$SCF	<u>C</u> opy Items	\$DRILL00
\$DRILL02 \$DRILL03	\$MKRPINNUM \$MKRBEADOUT	\$SCF \$SCF	<u>M</u> ove Items	\$DRILL02 \$DRILL03

2D Graphics Markers Mode

Esta ferramenta é usada para a construção de bibliotecas para PCB Packages, podendo inserir os seguintes parâmetros principais: Referência, Etiqueta e Origem. Esta última determina o ponto de inserção do componente na área de trabalho.

A criação de bibliotecas no Proteus ARES será vista adiante.

Dimension Mode

É uma ferramenta muito interessante, pois permite medir o tamanho do layout da placa de CI que está sendo construída ou até mesmo inserir cotas entre diversos componentes.

Essas medidas são impressas e podem ser identificadas nos sistemas "métrico" e "imperial".

A figura a seguir mostra o uso dessa ferramenta, onde é feita a medida entre os pinos 1 e 2 do resistor R1.

- clicar no ícone Dimension Mode

- clicar no pino 1 do resistor R1 com o botão esquerdo do mouse, mantendo o mesmo pressionado

- arrastar até o pino 2 do mesmo resistor soltar e clicar novamente

Teclando a letra "M" o valor será convertido para o sistema métrico.

A figura a seguir mostra as medidas de uma placa de CI.

1475 x 1475th ou 37,465 X 37,465mm ou 3,75 x 3,75cm

ZONE MODE – EXPLORANDO MAIS RECURSOS

Zone Mode é um recurso destinado a construir uma área de chapado para o plano GND=POWER, como por exemplo uma área de ligação comum para todos os pontos de GND (terra) ou POWER (alimentação).

Vimos anteriormente como esse recurso funciona, mas utilizando os padrões (Defaults) de configurações do Proteus ARES.

Vamos tomar como exemplo o projeto *Vagalume Biônico* visto anteriormente, conforme mostra a figura a seguir:

A placa foi novamente roteada para melhor elucidar os conceitos, e isto significa que a criação da área de chapado pode ser feita após o roteamento.

Os pontos de GND comuns referem-se aos emissores de Q1 e Q2 e o pino 2 do conector J2, no entanto vamos traçar um chapado para a alimentação do circuito.

Vamos criar então uma área de chapado para a alimentação de +3V=POWER usando as configurações DEFAULT do Proteus ARES. O ícone Zone Mode deverá estar selecionado.

Edit Zone	?	X
<u>N</u> et:	+3V=POWER	•
Layer/Colour:	Bottom Copper 🗾 Dimmed	-
<u>B</u> oundary:	DEFAULT	
<u>R</u> elief:	RELIEF	
<u>T</u> ype:	Solid Step: 25th	
Cle <u>a</u> rance:	10th 😑	
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	 ✓ Supress Islands: ✓ Allow Nesting: <u>□</u>K 	el

Observe que na opção *Dimmer* (esmaecido) a área de chapado não é visível com facilidade, mas ela existe e isto pode ser comprovado em *3D Visualization*.

Outra opção é *Normal*, onde a área de chapado tem a mesma cor do layer, mas fica mais difícil identificar as trilhas, conforme ilustra a figura a seguir.

Podemos então customizar ou personalizar a cor do chapado optando pela opção *Custom* na qual é possível selecionar a cor desejada.

A figura a seguir mostra o chapado com a opção Normal.

Personalizando a cor da área de chapado:

Editar o Zone Mode, conforme procedimentos já vistos.

Edit Zone			<u>?×</u>
<u>N</u> et:	+3V=POWER		•
Layer/Colour:	Bottom Copper	Custom	•
<u>B</u> oundary:	DEFAULT		
<u>R</u> elief:	RELIEF	-	
<u>Т</u> уре:	Solid		
Cle <u>a</u> rance:	10th		
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	Supress Islands: Allow Nesting:		other

Clicar na área colorida da opção *Custom* e escolher a cor desejada na paleta de cores.

A titulo de exemplo, foi escolhida a cor laranja. Clicar OK.

A figura a seguir mostra a área de chapado com a cor selecionada.

Boundary, Relief e Clearence:

Conforme foi visto as configurações adotadas foram DEFAULT ou padrão do Proteus ARES. Vamos alterar essas configurações e fazer comparações.

Boundary = fronteira, limite ou borda Clearence = área de alívio térmico (folga ou área livre) Relief = área de contato elétrico

Alterando as configurações conforme indica a figura a seguir:

Edit Zone		? 🗙
<u>N</u> et:	+3V=POWER	•
Layer/Colour:	Bottom Copper	Custom
<u>B</u> oundary:	T50	✓ <u>C</u> ustom:
<u>R</u> elief:	T30	_
<u>Т</u> уре:	Solid	💌 <u>S</u> tep; 25th 💭
Cle <u>a</u> rance:	15kh 😑	
Relieve <u>P</u> ins: E <u>x</u> clude Tracking: Route to this Zone:	 Supress Islands: Allow Nesting: 	✓ □ □K Cancel

Observe as diferenças entre esses parâmetros com nova configuração, na figura a seguir:

Comparando as duas figuras observa-se:

Boundary – o chapado preenche todo o contorno da placa

Relief – aumentou a área de contato elétrico

Clearence – aumentou a distância entre o chapado e a trilha ou o pino de ligação do componente. Observando os pinos 1 dos resistores R3 e R4, conclui-se que aumentando *Relief* diminui a área de alívio térmico.

Alterando o campo *Type* de Solid para Hatched:

A partir daí, outras alterações podem ser tentadas no sentido de se obter o resultado desejado. Normalmente os padrões (DEFAULTS) do programa atendem praticamente todas as exigências de um projeto.

SELECTION FILTER – (FILTRO DE SELEÇÃO)

A barra de ferramenta *Selection Filter* é usada para auxiliar na edição, localização ou até mesmo na identificação de qualquer componente em uma placa (layout) de CI.

Identificando os ícones da esquerda para a direita, no intervalo das setas demarcadoras:

Select Components
Select Graphics
Select Pins
Select Tracks
Select Vias
Select Zones
Select Connections
Track Selection Mode (Toggle)

Selecionando o ícone *Selection Mode* na barra de ferramentas de ações, podemos ver que alguns ícones serão habilitados (cor verde) na barra *Selection Filter*.

Com isso na barra *Selection Filter* várias opções estarão disponíveis e será possível editar e obter informações de qualquer componente que esteja habilitado na barra *Selection Filter*.

A configuração do filtro poderá ser feita pelo usuário, no entanto, o Proteus ARES já configura como padrão (default) alguns parâmetros de uso comum.

Para verificar essas configurações na barra de menus, em *System* clicar em *Set Selection Filter...*

Technology System Help	Selection Filter Configur
Check for Updates	Selection & Editing Mode
Set Display Options Set Environment Set Selection Filter Set Keyboard Mapping Set Plotter Pens Set Zopes	Default Filter State Components V Graphic Objects V Components Pins V Tracks V Vias V Zones / Power Planes V Ratsnest Connections
<u>R</u> estore Default Settings	<u> </u>

Observa-se que Ratsnest Connections está desabilitada.

Existem outras opções a serem configuradas pelo usuário, como por exemplo, a que mostram as figuras a seguir onde em *Zone Placement Mode* apenas uma opção é marcada como default.

Selection Filter Configur ? 🔀	Selection Filter Configur ?
Selection & Editing Mode Selection & Editing Mode Component Placement Mode Route Placement Mode Pad Placement Mode Graphics Placement Mode Ratsnest Editing Mode Vias Zones / Power Planes Ratsnest Connections	Zone Placement Mode ▼ Default Filter State □ Components □ Graphic Objects □ Components Pins □ Tracks □ Vias □ Zones / Power Planes ▼ Ratsnest Connections □
DEFAULT BRIDGE Zone Mode	╡ ╞╺╻の ╚┇┋ ┰ Ж╎╚╷

Para entender melhor vamos supor que o ícone *Selection Mode* esteja acionado e queiramos, por exemplo, avaliar as características do componente R1 na placa mostrada abaixo.

No círculo vermelho estão as informações do componente R1.

Os ícones ativos ou habilitados estão na cor verde, isto significa que o acesso às informações na placa estão disponíveis.

Ao clicar em cada um dos ícones o mesmo será desabilitado (tornando-se cinza) e qualquer acesso à informação na placa será bloqueado. Clicando novamente sobre o mesmo, torna a habilitá-lo.

Assim, por conveniência a habilitação e a desabilitação de qualquer função poderá ser feita na própria barra *Selection Filter*, sem que isso altere a configuração padrão em SYSTEM.

Para exemplificar melhor ainda e usando como exemplo a placa mostrada acima, vamos supor que queiramos obter informações apenas de algumas trilhas traçadas no layer TOP COPPER (lado do componente).

1 – Deixar habilitado apenas o ícone Select Tracks

2 - Clicar no ícone *Layer Filter Mode*. Ao clicar nesse ícone, apenas uma camada ou layer será mostrada.

3 – Em Layer Selector selecionar o layer ou camada TOP COPPER.

Com este procedimento somente será possível selecionar as trilhas existentes no layer TOP COPPER, a menos que exista alguma VIA que interligue os layers TOP BOTTOM e COPPER BOTTOM.

Conclui-se então que a barra de ferramentas *Selection Filter* pode ser muito útil quando em uma placa com muitos componentes deseja-se pesquisar alguns componentes específicos.

Resumindo: somente será possível selecionar o componente cujo ícone correspondente estiver habilitado em *Selection Filter*.

Outro recurso bastante interessante é o ícone *Track Selection Mode*, que opera em *Toggle*, ou seja, comutação ou alternância.

É uma ferramenta que funciona com o ícone *Selection Mode* ativo, ou seja, ao selecionar uma determinada área com trilhas na placa, pode-se visualizar as trilhas delimitadas pela área de seleção ou a extensão total dessa trilha, em outras palavras, onde começa e termina a ligação mesmo fora da área de seleção.

Nas figuras a seguir, à esquerda temos a delimitação das trilhas pela área de seleção e à direita o comprimento total das mesmas fora da área, clicando nesse ícone.

Trata-se de uma ferramenta que permite verificar as trilhas de qualquer layer, ou seja, não é necessária a seleção de um layer específico.

Trace Angle Lock, Auto Track Necking

Essas ferramentas vem habilitadas como Default, podendo ser desabilitadas no menu Tools.

Ao clicar nos ícones correspondentes na barra de menus podemos desabilitar ou habilitar (Toggle ou alternância).

Trace Angle Lock:

Quando ativado trava o ângulo das trilhas em 45° e 90°, que é uma das formas mais utilizadas para roteamento de uma placa de CI.

Observa-se na figura acima que é possível combinar os ângulos ou simplesmente traçar uma trilha interligando dois pontos (nets) em 45°.

As trilhas foram traçadas manualmente no layer TOP COPPER com uma largura de 40th (T40).

Auto Track Necking:

Esta é uma função muito interessante, pois provoca um estreitamento de trilhas quanto esta passa por dois PADS, ou mesmo entre duas trilhas.

O padrão DEFAULT para esse estreitamento é de 10th (T10).

A figura a seguir mostra trilha traçada entre os pinos 1 e 3 do CI-2 e CI-1 respectivamente, com largura T40 no layer TOP COPPER.

Para demonstrar como opera essa ferramenta, foi forçado um roteamento manual passando entra os pinos 5 e 6 do CI-1.

Layer Keepout

Esse layer tem uma utilização muito importante, quando desejamos que trilhas de roteamento não passem em um determinado local, que foi reservado para furações, rasgos, etc. destinado à fixação mecânica de algum componente.

Keepout pode ser então considerada uma área proibida para as trilhas.

A figura a seguir mostra uma área *Keepout* para impedir a passagem de trilhas.

Para traçar essa área clicar no ícone 2D Graphics Box Mode com o layer Keepout selecionado.

A figura a seguir mostra a tentativa de traçar uma trilha do pino 2 de C2 ao pino 5 de C1-2, com trilha de largura T40, passando através dessa área. O cursor se transforma em um sinal de PROIBIDO não dando continuidade ao tracejado.

A figura a seguir mostra roteamento completado, onde se observa que as trilhas são forçadas a contornar a área delimitada pelo layer Keepout.

A mesma coisa é valida para o layer COPPER BOTTOM.

Edit Layer Colours/Visibility – Gerber Viewer

Essa opção permite a configuração e edição dos layers do Proteus ARES, permitindo a personalização de suas cores bem como habilitar ou não a sua visibilidade em um projeto.

Clicando na cor, surge uma paleta de cores na qual é possível mudar a cor do layer, conforme ilustra a figura a seguir.

	Display Settings			? 🗙
	Displayed Layers Thru-View S	Settings		
Muda a cor	Colour Sec: BLACK_PAPER	Mech. 1	<u>∎</u> Inner 1	Ename Delete
do layer —		Mech. 2	∎ 🔽 Inner 2	■ ✓ Inner 9
		Mech. 3 Mech. 4	Inner 3 ■ ✓ Inner 4	■ 🖌 Inner 10
		Illegal K	Inner 5	■ V Inner 12
		Keepout Occupancy	Inner 6	Inner 13 ■ ✓ Inner 14
		Edge	🔳 Thru <u>P</u> ads	Pin <u>N</u> umbers
	📕 🗸 Ratsnest 🛛 🔳 🗸	Drill Holes	🔳 Thru <u>V</u> ias	■ Empty Zones
	🔽 🔽 Force Vectors 🛛 🔲	<u>G</u> rid Lines	🔳 <u>B</u> uried Vias	🔳 Drag <u>C</u> ursor
	Resist / Solder Paste	Display	🔳 Paper 👅 Edit Box	🥅 Hilight 🔳 World Box
	Draw Full Solder Paste		AI	None

Desmarcando o quadrado correspondente ao layer, o mesmo se tornará invisível.

	Display Settings		?
	Displayed Layers Thru-View Settings		
	<u>C</u> olour Set: BLACK_PAPER _▼	<u>N</u> ew Rename	<u>D</u> elete
Torna o layer invisível —	Top Copper Mech. 1 Bottom Copper F Mech. 2 Top Silk F Mech. 3	Inner 1 Inner 2 Inner 3	Inner 8 Inner 9 Inner 10

É possível personalizar também a cor de fundo da área de trabalho, por padrão BLACK_PAPER.

A figura a seguir mostra a área de trabalho configurada para WHITE_PAPER.

Ao se clicar no botão None, nenhum layer será visível e assim sendo a visibilidade do mesmo poderá ser selecionada individualmente com exceção dos layers:

Top Resist e Bottom Resist: para componentes discretos (máscara de solda)

Top Mask e Bottom Mask: para componentes SMD (máscara de solda)

A visualização desses layers será possível no Gerber Viewer (visualizador Gerber) ou no Preview de impressão em Print Layout.

Para melhor elucidar, vamos tomar como o exemplo o projeto *LO_gclock.LYT* visto anteriormente.

Nesse projeto foram gerados os arquivos GERBER . Trata-se de uma placa de CI com os layers TOP COPPER e BOTTOM COPPER.

1) clicar no ícone correspondente – Gerber Viewer

dit	Library	Tools	Techno	ology	System	i Help
6		н₩	🗗	⊿∿		m 4
		G	erber Vi	ewer		

2) selecionar o arquivo gerado anteriormente

Gerber View				
Look in:	🔁 tmp	•	+ 🗈 💣 🎟-	
8	Name 🔺		Si	ze Type
Recent	ELO_g_clock - CADGAM READ-ME.TXT		41	(B Text Document

No caso o arquivo gerado foi compactado com ZIP e para visualizá-lo o mesmo foi descompactado em uma pasta "tmp".

Normalmente esses arquivos são enviados para a produção, compactados.

3) selecionar as opções Top Resist e Bottom Resist, para os componentes convencionais.

Gerber View			? 🛛
File: C:\\Projetos Pr	oteus\tmp\LO_g_cla	ock - CADCAM READ-M	E
	L	ayers:	
Top Copper	Inner 1	Inner 8	Mech 1
Bottom Copper	Inner 2	inner 9	Mech 2
🗌 Top Silk	Inner 3	Inner 10	Mech 3
Bottom Silk	Inner 4	inner 11	Mech 4
Top resist	Inner 5	Inner 12	
Bottom Resist	Inner 6	Inner 13	
Top Mask	Inner 7	Inner 14	
Bottom Mask			
Drill			<u>N</u> one

As figuras a seguir mostram os layers selecionados separadamente, podendo ser usados para máscara de solda.

A figura a seguir mostra a máscara de solda para os componentes SMD, ou seja, na cor amarela, os PADS para os *packages* SMD.

Para finalizar, na figura a seguir a visualização de todos os layers pelo GERBER VIEWER.

Print Layout

Embora visto anteriormente, neste capítulo vamos explorar mais alguns recursos e suas configurações.

Vamos tomar como exemplo o projeto finalizado do gerador de clock.

As opções de impressão são:

Print Layout		
HP Officejet (USB001)	Printer:	<u>Printer</u> Filename
Mode: ✓ Top Copp ✓ Bottom Co ✓ Top Silk ■ Bottom Si	Artwork Artwork Solder Resist SMT Mask Drill Plot Inner 3 Inner 10 Ik Inner 4 Inner 11	S S S S S S S S S S S S S S

Artwork – Arte final Solder Resist – Lado da solda SMT Mask – Para SMD Drill Plot – Furação

Apenas para a visualização vamos posicionar o layout no centro da área de visualização da impressora, com escala de 500% (essa escala pode ser ajustada para uma visualização conveniente) e rotação no sentido vertical (X), conforme indica a figura a seguir.

Uptions:	
Printer Colour Set: BLACK_PAPER Eilename Labcenter Plotter Driver?	clicar com o
Separate Pages? <u>C</u> opies: 1 🚍	do mouse
Scale <u>B</u> otation: Reflection:	
 50% 100% 150% 200% 400% 500% 1 2 1 2 1 2 1 2 2 1 2 3 4 4<th>Position Output at Top Position Output at Bottom Position Output at Left Position Output at Right Position Output at Center Position Output Numerically Vuse Printer Margins?</th>	Position Output at Top Position Output at Bottom Position Output at Left Position Output at Right Position Output at Center Position Output Numerically Vuse Printer Margins?
	<u>O</u> K <u>C</u> ancel

Em Artwork Mode temos os layers marcados disponíveis para impressão.

Layer ✓ Top Copper ✓ Bottom Copper ✓ Top Silk Bottom Silk	rs/Artworks: Inner 1 Inner 2 Inner 3 Inner 4	Inner 8 Inner 9 Inner 10
 Top Copper Bottom Copper Top Silk Bottom Silk 	Inner 1 Inner 2 Inner 3 Inner 4	Inner 8 Inner 9 Inner 10 Inner 11
Bottom Copper Top Silk Bottom Silk	Inner 2 Inner 3	Inner 9 Inner 10
✓ Top Silk Bottom Silk	Inner 3	Inner 10
Bottom Silk	Inner 4	Inner 11
		A.A.
I op Hesist	Inner 5	Inner 12
Bottom Resist	Inner 6	Inner 13
🔲 Top Mask	Inner 7	Inner 14
Bottom Mask	V Mech 1	Mech 3
🔲 Drill	Mech 2	Mech 4
Board Edge	<u>A</u> ll	None
Advanced Options	·	

Com relação ao Artwork Mode (arte final), poderão ser impressos cada um dos layer separadamente ou todos juntos.

É bom lembrar ainda que a impressão na escala 100% é o tamanho real (1:1).

A figura a seguir mostra Artwork Mode em MONOCHROME apenas com os layers

Top Silk e Board Edge habilitados.

O layer Top Silk é usado para serigrafia, ou seja, imprimir os *packages* dos componentes para orientar a sua inserção manual ou mesmo, para tornar o projeto mais estético.

Em Solder Resist Mode, temos marcados os layers disponíveis para a impressão.

Mode: Solder	Resist					
Laye	Layers/Artworks:					
☐ Fop Copper ☐ Bottom Copper ☐ Top Silk ☐ Bottom Silk ✔ Top Resist	Inner 1 Inner 8 Inner 2 Inner 9 Inner 3 Inner 10 Inner 4 Inner 11 Inner 5 Inner 12					
Bottom Resist Top Mask Bottom Mask Drill Board Edge	Inner 6 Inner 13 Inner 7 Inner 14 Mech 1 Mech 3 Mech 2 Mech 4					
Advanced Options	<u>All None</u>					

Ao selecionar apenas o layer Bottom Resist, é possível então imprimir a máscara de solda para os componentes discretos.

A figura a seguir mostra esses layers separados.

Se a impressão for utilizada para elaborar uma tela para serigrafia, quando se trata do lado dos componentes, deve-se ter o cuidado para fazer o espelhamento da impressão, e neste caso, deve ser selecionada a opção MIRROR.

Mode:	Solder Resist	•	Sep.	arate Pages? (<u>C</u> opies:	1 主
	Layers/Artworks:		<u>S</u> cale	<u>R</u> otation:		Reflection:
🗌 Тор С	Copper 📄 Inner 1	Inner 8	♦ 50%	♦ X Horizonta	ı	Normal
Bottor	m Copper 🛛 🗌 Inner 2	inner 9	à 100%			A Mirror
Top 9	iik 🗌 Inner 3	Inner 10				(c

A figura a seguir mostra o layer Top Mask selecionado.

de: SMT N	lask	•
Lay	ers/Artworks:	
Top Copper Bottom Copper Top Silk Bottom Silk Top Resist Bottom Resist Top Mask Bottom Mask Drill Board Edge	Inner 1 Inner 2 Inner 3 Inner 4 Inner 5 Inner 6 Inner 7 Mech 1 Mech 2	☐ Inner 8 ☐ Inner 9 ☐ Inner 10 ☐ Inner 11 ☐ Inner 12 ☐ Inner 13 ☐ Inner 14 ☐ Mech 3 ☐ Mech 4 ▲ Mech 4

Em Drill Plot Mode, apenas o layer Drill é selecionado.

Mode: Drill Pl	ot	•			
Lay	ers/Artworks:-		+		
Top Copper Bottom Copper Top Silk Bottom Silk Top Resist Bottom Resist Top Mask	Inner 1 Inner 2 Inner 3 Inner 4 Inner 5 Inner 6 Inner 7	Inner 8 Inner 9 Inner 10 Inner 11 Inner 12 Inner 13 Inner 14			
Bottom Mask Drill Board Edge	Mech 1 Mech 2	Mech 3 Mech 4 <u>N</u> one	+	× × \$	+

Set Output Area

File	Output	View	Edit	Library	Tools	Techn	ology	System	n H	lelp	
	i 🖓 🚰	i	1		HI 🗬	[] 🖉	⊿^⊾ ‡		m	+ ۱	-
k				Set	Output	Area					
≯	_										

Trata-se de um recurso que permite imprimir uma determinada área de um layout.

A figura a seguir mostra a seleção de uma área a ser impressa.

Para selecionar a área clicar no ícone Set Output Area e com o botão esquerdo do mouse delimitar a área desejada e clicar novamente. A seleção da área deve ser feita com o botão esquerdo do mouse pressionado.

A figura a seguir mostra a área selecionada para a impressão.

	? 🔀
Options: Colour Set: WHITE_PAPER Labcenter Plotter Driver?	
arate Pages? <u>C</u> opies: 1 <u>Botation:</u> A Horizontal A Vertical Compensation Factors: Note: these are not traditional scaling factors! X: 1 Y: 1	

Para eliminar a área selecionada, clicar novamente no ícone *Set Output Area*, levar o cursor para a área selecionada e clicar.

Outra opção é clicar no ícone Set Output Area e teclar ESC.

CRIAÇÃO DE UMA CHAVE DE TOQUE "TACTILE"

Vamos supor que você queira acrescentar em seu esquema, em especial no layout da placa de CI, o PCB Package de um componente que não exista da biblioteca do Proteus ARES.

Então temos que criar esse package e integrá-lo também ao Proteus ISIS, encontrando um símbolo eletrônico para o mesmo.

Tomemos como exemplo uma chave de pressão "Tactile Switch", do tipo muito usada em joysticks. A primeira informação que temos que obter é em relação as suas dimensões e para isso, nada melhor do que consultar o data-sheet do fabricante.

Supondo que dispomos da chave mostrada na figura a seguir.

Dispomos de um data-sheet dessa chave com o código B3W fabricado pela OMRON Technologies. As figuras a seguir mostram as suas medidas.

Para a criação do package (ARES) e dispositivo (ISIS), nos interessam:

PCB Mounting, que mostra a distância dos furos e seu diâmetro para a inserção do componente.

Precisaremos então de 4 PADS com distâncias equivalentes de 4,5 e 6,5mm com furos de no mínimo 0,7mm de diâmetro. Por padrão (muito mais em função de diâmetro de brocas existentes no mercado) furos de 1mm atendem as exigências.

A figura a seguir mostra o diâmetro mínimo dos furos em milímetros.

Terminal Arrangement (Internal Connections), para simulação no Proteus ISIS.

Observa-se que os pinos 3-4 e 1-2 são interligados e podemos definir:

<mark>1-2 = comum</mark> <mark>3-4 = NA</mark>

Procedimentos:

1) Na área de trabalho do Proteus ARES inserir 4 PADS.

O pad S-80-40 pode ser utilizado

Se quisermos melhor fixação mecânica, podemos alterar o seu diâmetro para 30th ou 0,762mm criando assim um novo PAD. Neste caso, pode-se usar uma broca de 0,8mm.

As figuras a seguir mostram a criação de um novo PAD. Basta clicar no botão "C" (Create) e definir a nova furação, podendo ser aproveitadas as demais características do S-80-40.

Edit Square Pad Style) 🚰 🔚 🚔 🚱 🧔
can square r ad style	80th
Create New Pad Style Name: S-80-30 Normal SMT Circular Square OIL Polygonal QK Cancel Name: S-80-30 Square: 80th 문 DIL Polygonal QK Cancel Name: S-80-30 Square: 80th 문 Dill Changes: QK Cancel	C E SQR THRU DILSQ S-40-15 S-40-25 S-50-25 S-60-25 S-60-25 S-60-25 S-60-32 S-70-30 S-75-40 S-80-40 S-80-40

Um *pad* quadrado de 80th de lado é suficiente para uma boa fixação mecânica do componente na placa de CI.

2) Como as medidas são dadas em milímetros alterar o padrão para métrico, clicando no ícone correspondente ou teclando a letra "M".

A visibilidade do Grid fica por conta do projetista, no entanto vai uma sugestão: Snap 0,5mm para fixação e Snap 0,1mm para movimentação.

3) Definir um ponto de origem (clicando no ícone correspondente ou teclando a letra "O") e posicionar os 4 *pads* conforme distâncias indicadas no data-sheet.

4) Traçando o invólucro ou contorno utilizando a ferramenta 2D Graphics Box Mode no layer TOP SILK,

5) Para tornar o *package* mais estético, vamos desenhar um círculo de 3mm de diâmetro. Para isto criar um novo ponto de origem e traçar um raio de 1,5mm com a ferramenta 2D Graphics Circle Mode.

Selecionar o círculo e centralizá-lo. Se houver dificuldades para centralizá-lo basta alterar o Grid para 0,1mm.

6) O próximo passo criar o PCB Package.

Para isso, selecionar o desenho e com o botão esquerdo do mouse clicar em Make Package.

Preencher a janela conforme descrição desejada. Na figura a seguir uma sugestão para esse preenchimento.

Em *Package Sub-category* essa subcategoria foi criada, a qual é opcional, pois pode ser selecionada qualquer uma das opções existentes ou até mesmo, por opção ou dependendo do tipo de *package*, não atribuir nenhuma subcategoria.

Make Package	? 🛛
Indexing and Library Selection 3D Visualization	
New Package <u>N</u> ame: B3W-1000	Save Package To <u>L</u> ibrary: USERPKG
Package <u>C</u> ategory:	
Package Lype:	
Through Hole ▼ New Package Sub-category:	
Tactile Switch	
Package <u>D</u> escription: Switch B3W - Omron	
Ad <u>v</u> anced Mode (Edit Manually)	
<u> </u>	

A figura a seguir mostra a visualização em 3D desse *package*, antes de ser inserido na biblioteca, ou seja, antes de teclar OK.

Após teclar OK o *package* é inserido na biblioteca.

Para visualizar o layout final, ou seja, como aparecerá na placa de CI, basta selecionar o componente (para isto basta clicar com o botão direito do mouse em qualquer um dos PADS) e selecionar *3D Visualization*.

A figura a seguir mostra o *package* disponível para ser inserido na área de trabalho, lembrando que o mesmo foi automaticamente salvo na biblioteca USERPKG.

Atente para o detalhe de que a área de *preview* já dispõe das medidas e da identificação dos pinos (pads) com seus números.

No entanto verifica-se que a numeração dos PADS não obedece a sequência mostrada no data-sheet do fabricante.

O programa se encarregou de fazer a identificação que por padrão (default), obedece ao sentido horário na ordem crescente.

OBS: a identificação e sequência dos terminais poderia ter sido feita antes, ou seja, no momento em que os PADS foram inseridos na área de trabalho. Bastaria apenas editá-los e colocar a numeração em outra sequência.

Vamos então reordenar a numeração conforme imposta pelo fabricante.

Decompose Tagged Objects

Para reordenar a numeração dos PADS é preciso editá-los, no entanto, uma vez construído o *package* isso só será possível fazendo a decomposição do mesmo.

Para isso temos que selecioná-lo, e uma das formas de fazer isso é clicar com o botão direito do mouse em um dos PADS e tudo estará selecionado.

Clicar na opção Decompose Tagged Objects (decompor objetos marcados).

Drag Object Edit Properties Move to Delete Object	Ctrl+E	
C Rotate Clockwise ⇒ Rotate Anti-Clockwise ⇒ Rotate 180 degrees ↔ X-Mirror ↓ Y-Mirror	Num Num-+ Ctrl+M	
Cut To Clipboard	•	NAME=B3W-1000
Edit Label Edit Pin Make Package Compose Tagged Object 3D Visualization	¹⁵ k	

A partir daí basta alterar a numeração para a sequência desejada: 4 – 3 – 2 – 1 Temos duas opções:

Tutorial **PROTEUS ARES PROFESSIONAL** – Design Suite – Prof. Edgar Zuim

- Selecionar o *package* e salvar com os mesmos dados anteriores e clicar em OK e neste caso o *package* será atualizado, ou

- Salvar com outro nome, mantendo o package original.

A figura a seguir mostra a edição dos PADS para nova sequência de numeração.

▐▌╤══╴		
	Edit Single P	in ? 🔀
	<u>L</u> ayers:	ALL
	<u>S</u> tyle:	S-80-30
	<u>R</u> elief:	Default
	<u>D</u> rill Hole:	Plated
	<u>N</u> et:	(None)
	<u>N</u> umber:	4
	Lock Position	n? <u>O</u> K <u>C</u> ancel
NAN	1 E=B 3	3W-1000

Vamos optar por salvar com o mesmo nome, atualizando a biblioteca.

Selecionando o *package* e salvando com os mesmos dados anteriores:

Utilizar os dados anteriores:

Make Package	? 🔀
Indexing and Library Selection 3D Visualization	
New Package <u>N</u> ame:	Save Package To Library:
Package Category:	USERPKG
Discrete Components	
Through Hole	
Package <u>S</u> ub-category:	
Package Description:	
	1
Ad <u>v</u> anced Mode (Edit Manualiy)	
<u>H</u> elp	<u> </u>

A figura a seguir mostra a informação de que o *package* será atualizado permanentemente.

Clicar YES.

A figura a seguir mostra que todas as instâncias do *package* serão atualizadas no atual layout.

A figura a seguir mostra o *package* atualizado na área de trabalho.

7) Para finalizar, no Proteus ISIS devemos escolher um símbolo eletrônico para o *package*, definindo as funções dos pinos (pads) e suas correspondentes identificações.

8) Abrir o Proteus ISIS e em Pick Device vamos selecionar SWITCH.

<u>Category:</u>		
(All Categories) Analog ICs CMOS 4000 series Data Converters Diodes Laplace Primitives Microprocessor ICs Modelling Primitives Operational Amplifiers Switches & Relays Switching Devices Transistors TTL 74HC series		<u>Sub-category:</u> (All Sub-categories) Keypads Relays (Generic) Relays (Specific) Switches
SW-SPST-MOM		/E Interactive SPST Switch (Momentary Action) /F Interactive SPST Switch (Momentary Action)
SWITCH		/E Interactive SPST Switch (Latched Action)
THUMBSWITCH-BCD THUMBSWITCH-BCD-C THUMBSWITCH-HEX	ACTIV ACTIV ACTIV	 /E Interactive 10 State Thumbwheel Switch (4 Bi /E Interactive 10 State Thumbwheel Switch (4 Bi /F Interactive 16 State Thumbwheel Switch (4 Bi
	Pa	ckage Not Found!

Como o dispositivo escolhido pertence ao Proteus ISIS sem um *package* atribuído, podemos lhe atribuir o PCB Package B3W-1000 criado recentemente.

9) Inserir o componente na área de trabalho do Proteus ISIS.

10) Decompor:

 + Drag Object Edit Properties Delete Object	Ctrl+E
C Rotate Clockwise C Rotate Anti-Clockwise Rotate 180 degrees	Num Num-+
↔ X-Mirror ‡ Y-Mirror	Ctrl+M
💑 Cut To Clipboard 🛍 Copy To Clipboard	-

11) Editar os pinos do símbolo. Deverão ser renomeados os pinos conforme datasheet, ou seja, COM e NA.

\times	🕂 Drag Object]
	Edit Proper <mark>ti</mark> es	Ctrl+E	
	C Rotate Clockwise	Num	-
	🖸 Rotate Anti-Clockwise	Num-+	
	🕄 Rotate 180 degrees		
	↔ X-Mirror	Ctrl+M	
	🗘 Y-Mirror		

As figuras a seguir mostram esse processo.

OBS: Desmarcar o campo Draw number? e manter o ponto de origem.

Ponto de origem

12) Selecionar o símbolo, clicar com o botão direito do mouse e selecionar a opção Make Device.

Vamos nomear como Tactile Switch, prefixo "S" e clicar NEXT.

Make Device	? 🛛
Device Properties	
General Propertie	8:
Enter the name for the device and the component reference	prefix.
Device Name: TACTILE SWITCH	
Reference Prefi <u>x</u> : S	
Enter the name of any external module file that you want atta	ached to the device when it is placed.
External Module:	
Active Component Pro	perties:
Enter properties for component animation. Please refer to the	Proteus VSM SDK for more information.
Symbol Name Stem:	
No. of States: 0	
Bitwise States?	
Link to DLL?	
<u>H</u> eip <u>SBack</u>	

Make Device
Packagings
There are no PCB packagings defined for this device. Use the Add/Edit button to assign one or more packagings to the device. You can then select the appropriate packaging by editing the placed
The device has no packagings to preview.
Clicar
<u>A</u> dd/Edit
<u>H</u> elp <u>≤</u> Back Next <u>></u> <u>□</u> K <u>C</u> ancel

Ao clicar em Add/Edit, vamos escolher o package criado: B3W-100.

^{isis} Package Device				

RES Pick Packages				
Keywor <u>d</u> s: <u>R</u> esults (1):				
B3W/	Device Library Description			
Match Whole Words?	B3W-1000 USERPKG Switch B3W - Omron			
<u>Category:</u> (All Categories) Discrete Components	B3W-1000 Preview:			
<u>Type:</u> (All Types) Through Hole	6.5mm			

13) Atribuir a função dos PADS, ou seja, relacionar COM e NA com a numeração dos pinos ou PADS.

Para a função COM basta atribuir apenas para o pino 1, pois o mesmo está interligado internamente com o pino 2 e para a função NA basta atribuir apenas para o pino 3, pois o mesmo está interligado internamente com o pino 4.

COM = comum e NA = normalmente aberto.

As figuras a seguir mostram como atribuir as funções NA e COM aos pinos.

Clicar na linha correspondente ao Pin COM e em seguida no pino 1 do package. Proceder de forma idêntica para o Pin NA e clicar em seguida no pino 3 do package.

^{isis} Package Device	? 🛛
Packagings: B3W-1000	4.5mm
✓ Default package? <u>A</u> dd <u>R</u> ename <u>D</u> elete <u>O</u> rder	
No. Of Gate 🚺 🔲 Gates (elements) can be swapped on the PCB layout?	2 4 4
Pin Hidden Common Type A COM Passive +1º clic	
NA Passive	
NC Pins Add Pin Remove Pin	6.5
Swapable Pins:	
Add	
Remove	
Replace	2= GIU
✓ Use ARES Libraries <u>H</u> elp Assign F	Package(s) Cancel

isis Package Device	<u>?</u> 🛛
Packagings: B3W-1000 ✓ Default package? Add Rename Delete Order	4.5mm
No. Of Gate I Gates (elements) can be swapped on the PCB layout? Pin Hidden Common Type A COM Passive I	2 4
NA Passive 3 NC Pins Add Pin Remove Pin	6.5mm
Swapable Pins:	1 3
Replace	
✓ Use ARES Libraries <u>H</u> elp Assign F	Package(s) Cancel

Como se trata de um componente "monogate", o campo No. Of Gate = 1

Clicar em NEXT

Make Device		? 🛛		
Component Properties & Definitions				
Use the New and Delete keys to add/ packaging for PCB layout and parame and components costs.	remove properties to ters for simulator mod	the device. Properties can be used to specify els, as well as information such as stock-codes		
		Property Definition:		
	<u>N</u> ame:	PACKAGE		
	Des <u>c</u> ription:	PCB Package		
	<u>T</u> ype:	PCB Package		
	<u>P</u> CB Package(s):	B3W-1000		
		Browse		
<u>v</u>	<u>Т</u> уре:	Normal		
		Property Defaults:		
× ×	Default <u>P</u> ackage	B3W-1000		
<u>N</u> ew <u>D</u> elete	⊻isibility:	Hide Name & Value		
Apply Default Properties to Components in Old Designs?				

Como a próxima tela refere-se a documentação e arquivo HELP para o componente, a mesma pode ser ignorada. Clicar em NEXT.

Surge então a tela final para ser preenchida de acordo com as características do dispositivo ou componente. A figura a seguir mostra uma sugestão.

Make Device	? 🛛
Indexing and Library Selection	
Device <u>C</u> ategory:	Save Device To <u>L</u> ibrary:
Switches & Relays	USERDVC
Device <u>S</u> ub-category:	
Switches	
Device Manufacturer:	
OMRON Vew]
Stock/Order <u>C</u> ode:	
Device <u>D</u> escription:	
Tactile Switch	
Advanced Mode (Edit Fields Manually)	
Device No <u>t</u> es:	
<u>H</u> elp <u>≺</u> Back Next⊵	<u> </u>

Clicar OK. Por padrão o dispositivo é salvo na biblioteca USERDVC.

A figura a seguir mostra o símbolo criado no Proteus ISIS e sua edição, contendo na informação o PCB Package B3W-1000.

	S1 TACTILE SWIT <text></text>	СН	
Edit Component			? 🗙
Component <u>R</u> eference: Component <u>V</u> alue:	S1 TACTILE SWITCH	Hidden: 🗌 Hidden: 🗌	
PCB Package:	B3₩-1000 ▼ ?	Hide All 💌	
Other <u>P</u> roperties:			

CRIAÇÃO DE UMA EEPROM AT24C128/256

No capítulo anterior foi criado um PCB Package e o mesmo foi associado a um símbolo eletrônico existente no Proteus ISIS.

Neste capítulo vamos fazer o contrário, ou seja, construir um símbolo eletrônico de uma memória EEPROM e associar esse símbolo a um *package* existente no Proteus ARES.

A memória AT24C128 é uma memória de 128k (8 x 16.384) ou 256k (8 x 32.768) de fabricação da Atmel. Vamos utilizar um encapsulamento TSSOP 14 pinos para SMD, aproveitando um PCB Package existente no Proteus ARES, embora exista para esse componente outros tipos de encapsulamento.

Pinagem da EEPROM AT24C128

Observa-se que 7 pinos não são conectados (NC).

Pin Name	Function
A0 - A1	Address Inputs
SDA	Serial Data
SCL	Serial Clock Input
WP	Write Protect
NC	No Connect
GND	Ground

Procedimento:

1) Abrir o Proteus ISIS e com a ferramenta *2D Graphics Box Mode*, desenhar um retângulo de 500 x 500th (Grid sugerido 0.1in).

2) Com a ferramenta Device Pins Mode inserir pinos de contato.

Observando o layout da pinagem desse CI, vemos que do lado esquerdo existem 3 pinos efetivamente ligados e do lado direito 4 pinos, pois os demais não são conectados.

Vamos inserir então 3 pinos do lado esquerdo e 4 pinos do lado direito.

Lado esquerdo	Lado direito
AO	VCC
A1	WP
GND	SCL
	SDA

3) Com a ferramenta *2D Graphics Markers Mode* inserir um ponto de origem (marcador). Esse ponto de origem orienta a inserção do componente na área de trabalho.

4) Editar e identificar os pinos de acordo com a ordem do data-sheet do fabricante.

	Edit Pin		? 🗙	
	Pin <u>N</u> ame: A0			
	Default Pin N <u>u</u> mber:			
	Draw body?			
X	Draw na <u>m</u> e?	Rotate Pin Name?		
	Draw numbe <u>r</u> ?	Rotate Pin Number?		
	Electrical Type:			
	♦ PS - <u>P</u> assive	♦ TS - <u>T</u> ristate		
	🔶 🕪 - Input	🔿 PU - Pull-up		
		OPD - Pull-down		
	0 - <u>B</u> idirectional	PP - Power Pin		
	Use the PgUp and PgDn keys to navigate through the pins			
	<previous next2<="" th=""><th></th><th>ancel</th></previous>		ancel	

A figura acima mostra a identificação do pino AO que é um pino de entrada (IP-Input).

A0 – A1 = entrada GND = power VCC = power WP = entrada SCL = entrada SDA = bidirecional

Proceder de forma idêntica para identificação dos demais pinos.

OBS: como os pinos inseridos à direita do símbolo sofreram um rotacionamento de forma a serem inseridos corretamente, devemos fazer um espelhamento de cada um deles

no sentido vertical, caso contrário os números de identificação aparecerão na parte inferior do pino em relação ao lado esquerdo, apenas por questão de estética. Selecionar cada um dos pinos e aplicar o comando Y-Mirror, conforme ilustra a figura a seguir.

5) Selecionar o símbolo. Após selecionado, clicar com o botão direito do mouse e escolher a opção *Make Device.*

6) Nomear conforme sugerido na figura a seguir e clicar em NEXT:

Make Device ?	
Device Properties	
General Properties:	
Enter the name for the device and the component reference prefix.	
Device Name: AT24C128	
Reference Prefi <u>x</u> : U	
Enter the name of any external module file that you want attached to the device when it is placed.	
External <u>M</u> odule:	

7) Clicar em Add/Edit e em seguida em NEXT:

Add/Edit	
	el

8) Clicar em Add para adicionar um PCB Package do Proteus ARES. Clicar em NEXT para abrir a janela Pick Packages:

^{isis} Pack	age Devi	:e			
Packagir	ngs:				
	D	efault packa	ige (Add	B	
No. Of G	ates: 1	Gate:	(elements)	can be s	swapped on the PCB layout?
Pin	Hidden	Common	Туре	A	
AO			Input		
A1			Input		
GND			Power		
SCL			Input	_	
SDA			1/0		Na poskagao availabla far prav
VCC			Power	_	NU packages available for prev
WP			Input		
1					
NC Pins:					Add Pin Bemove Pin
11011110.	1				

Em Pick Packages, digitar no campo Keywords o código do encapsulamento mencionado pelo fabricante, no caso: TSSOP14.

Trata-se de um encapsulamento para CI com 14 pinos, tecnologia SMD.

🕮 Pick Packages	
Keywor <u>d</u> s: [tssop14] Match Whole Words?	<u>R</u> esults (1): Device Library Description TSSOP14 SMTCHIP 14 pin, 0.65mm pitch TSSOP fo
<u>Category:</u> (All Categories) Integrated Circuits	TSSOP14 Preview:
<u>Type:</u> (All Types) Surface Mount	Semm

9) Clicar em OK. Teremos então o package disponível para a identificação, conforme mostra a figura a seguir:

^{isis} Package Device	? 🔀
Packagings: TSSOP14 ✓ Default package? Add Rename Delete Order	0.65mm – \ ↓
No. Of Gate Gates (elements) can be swapped on the PCB layout?	7 6 5 4 3 2
Pin Hidden Common Type A A0 Input Input Input A1 Input Input Input GND Power Input Input SCL Input Input Input SDA I/O VCC Power Input VCC Power Input Input Input NC Pins Add Pin Remove Pin Swapable Pins: Add Add	2.85mm
Remove Replace	4 3.9mm
✓ Use ARES Libraries <u>H</u> elp	Assign Package(s) Cancel

Como se trata de um componente monogate, deixar o campo No. Of Gate em 1.

10) Procedendo como no capítulo anterior, identificar cada um dos pinos relacionados à esquerda (AO, A1, GND, SCL, SDA, VCC e WP) com o *package*.

Clique na linha correspondente aos pinos e em seguida clique no pino do package.

^{isis} Packag	ge Devic	e											? ×
Packaging	s: TSS(OP14						•					
	De	fault packa	ige? <u>A</u> d	d B	ename	Dele	te	<u>O</u> rder			0.	65mm	
											-		
No. Of Gate	e 1	🔲 Gates	(elements)	can be s	wapped	d on the F	PCB lay	out?		7 6 5	4 з	2	4
Pin	Hidden	Common	Туре	A									
A0			Input	1									
GND			Power										
SCL			Input										
SDA			1/0										3.
VCC			Power										- 2
WP			Input										, G
NC Pins					Ado	d Pin	Rem	ove Pin					
Swapable f	Pins:												$\overline{\nabla}$
						1		Add		8 9 IU	11 12	13 1	_
										4			
							F	lemove		ັ <u></u> 20	nana	V	
								leolace		3.9			
1						2		replace					
						Г							
✓ Use ARE	ES Librarie	s						<u>H</u> elp		Assign Packa	ge(s)	Canc	el
										7 6	s i	з 2	
No.	Of Gate	1	Gates (ele	ements) c	an be s	wapped	on the l	PCB layou	t?				
Pi	n Hio	lden Co	mmon Ty	ре	A								
A0	1		Inp	out	1								
A1	ID		Inp	out	2								
GN CC	1		Po	wer	9								
SD	,⊑)A		1/0)	8								
VC	ж С		Po	wer	14								
WF	P		Inp	out	13								
NC	Pins					۵dd	Pin	Benou	e Pin				
ne								Trantov	on in l				
										8 9	10 11	12 13	18

Observe que os pinos 3,4,5,6,10,11 e 12 não foram identificados.

Para identificar esses pinos, clicar no campo NC Pins e com o cursor piscando clicar nos pinos não identificados do package. Esses serão os pinos NC.

^{isis} Package	Device					? 🗙
Packagings:	TSSOP14	ge? <u>A</u> dd	B	ename	e <u>O</u> rder	0.65mm - \
No. Of Gate Pin Hid A0 A1 GND SCL SDA VCC WP NC Pins 3.4,	1 Gates	(elements) ca Type Input Input Power Input I/O Power Input	A 1 2 7 9 8 14 13	Add Pin	CB layout?	2.85mm
Swapable Pins	8:			~	Add Remove Replace	8 9 10 11 12 13 13 1 4 3.9mm

11) Clicar em Assign Package(s) para finalizar.

As próximas janelas poderão ser ignoradas a não ser que se deseje alterar os parâmetros, que não é o caso.

Na verdade é uma informação de que o *package* já foi criado com as suas propriedades e definições.

Clicar Next nas duas janelas.

	_		Property Definition:	
FACNAGE	~	<u>N</u> ame:	PACKAGE	
ļ	_	Des <u>c</u> ription:	PCB Package	
		<u>Т</u> уре:	PCB Package 🔽	
		<u>P</u> CB Package(s):	TSSOP14	
			[]	Browse
	Ľ	<u>Т</u> уре:	Normal	
			Property Defaults:	
~	*	Default <u>P</u> ackage	TSSOP14 💌	
New Delete	_	⊻isibility:	Hide Name & Value 🛛 💌	
Apply Default Properties to Cor	mpon	ents in Old Desians?		

A próxima janela permite que seja indexado um arquivo, normalmente PDF para servir como ajuda ou data-sheet do componente.

Clicar em Next.

Make Device		? 🗙
Device Data Shee	t & Help File	
You can link your device accessed via special bul	e to a data sheet (Acrobat .PDF file) and/or a help file. These o ttons on the 'Edit Component' dialogue form.	an then be
	Data Sheet:	
<u>D</u> ata Sheet Filename:		
Download <u>S</u> erver:		
<u>D</u> ownload Path:		
Download <u>U</u> ser Id:		
Download Password:		
CD <u>T</u> itle:		
<u>C</u> D Path:		

Para finalizar, clicar em OK. O dispositivo será salvo na biblioteca USERDVC.

Make Device	? 🛛
Indexing and Library Selection	
Device <u>C</u> ategory:	Save Device To Library:
Memory ICs	USERDVC
Device <u>Sub-category</u> :	
EEPROM Vew	
Device <u>M</u> anufacturer:	
Atmel	
Stock/Order <u>C</u> ode:	
Device Description:	
EEPROM 128k (8 × 16384)	
Advanced Mode (Edit Fields Manually)	
Device Notes:	
<u>H</u> elp <u>≺</u> Back Next⊵	<u> </u>

A figura a seguir mostra o componente na biblioteca do Proteus ISIS com o seu respectivo *package*.

CRIAÇÃO DE UM COMPONENTE MULTIGATE HETEROGÊNEO

RELÊ ELETROMECÂNICO

Neste capítulo vamos criar um relê eletromecânico, da marca Metaltex, modelo AX1RXX, onde XX representa a tensão nominal da bobina.

Dimensões: 19 x 15,8 x 15,8mm

Antes de prosseguir na construção do componente devemos conhecer as características do relê quanto as suas medidas e seu diagrama elétrico, que são mostradas a seguir, em milímetros, consultando o catálogo do fabricante.

A figura a seguir mostra o diagrama PCI com as medidas em milímetros, visto por baixo.

Diagrama PCI / Printed circuit layout

Considerando que no Proteus ARES os *packages* são construídos no TOP VIEW (vista por cima), devemos espelhar o diagrama verticalmente.

Diagrama Elétrico / Schematic

COM = comum (pino do contato) C1 = C2 = ligação da bobina (do inglês COIL) NF = Normalmente fechado (pino do contato) NA = Normalmente aberto (pino do contato)

A partir daí, podemos iniciar a construção do nosso componente no Proteus ARES.

Vamos utilizar os seguintes PADS:

C1 e C2, o pad C-100-30 (diâmetro do furo = 0,762mm) COM, o pad C-100-45 (diâmetro do furo = 1,14mm) NA e NF, o pad C-100-50 (diâmetro do furo = 1,27mm)

Os pads C-100-30 e C-100-45 foram criados.

O próximo passo é a identificação dos PADS.

Conforme visto anteriormente, para editar o pad basta clicar com o botão direito do mouse para selecioná-lo e selecionar a opção Edit. A figura a seguir mostra a identificação do PAD C2.

Proceder de forma idêntica para identificar os demais PADS.

2					N	F	1
M _					N	A	
	2	2	2	2	2	2 N	

Colocar um ponto de origem.

Colocar um ponto de referência.

Selecionar tudo e clicar com o botão direito do mouse. Na janela de seleção que surge, clicar em *Make Package*, atribuindo:

NAME: AX1RC2 CATEGORY: Discrete Components TYPE: Through Hole SUB-CATEGORY: Relays

Keywor <u>d</u> s:	<u>R</u> esults (1)):	
AX1RC2	Device	Library	Description
Match Whole Words?	AX1RC2	USERPKG	Relay AX1RC2 - Metaltex
<u>Category:</u> (All Categories) Discrete Components		AX1RC2 Pre	eview:
, <u>Type:</u> (All Types) Through Hole		5	12.2mm
Sub-category: (All Sub-categories) RELAYS		2mm	14.2mm
			14.2mm

Dando continuidade precisamos encontrar os símbolos eletrônicos no Proteus ISIS e correlacionar os PADS.

O próximo passo é identificar os PADS com os símbolos, usando os mesmos procedimentos adotados anteriormente.

Lembrar que para isso é necessário fazer a decomposição dos símbolos eletrônicos.

Neste caso temos dois elementos distintos: o indutor e a chave SPDT, daí então o nome de componente heterogêneo e multigate. Os pinos do indutor e da chave devem ser editados para que futuramente possam ser associados aos PADS.

As figuras a seguir ilustram esse procedimento.

	Edit Pin	? 🛛
\star	Pin <u>N</u> ame: C1 Default Pin N <u>u</u> mber: C1 Draw body? V	
	Draw name? Draw number?	Rotate Pin Name?
	← ◆ PS - <u>P</u> assive ◆ IP - <u>I</u> nput ◆ OP - <u>O</u> utput ◆ IO - <u>B</u> idirectional	TS - <u>T</u> ristate PU - Pull- <u>up</u> PD - Pull- <u>d</u> own PP - Po <u>w</u> er Pin
	Use the PgUp and PgDn keys	to navigate through the pins

Edit Pin	? 🛛	
Pin <u>N</u> ame: C2		
Default Pin N <u>u</u> mber:		
Draw body?		
Draw name? Draw number?	Rotate Pin Name?	
<u>E</u> lectrica	а Туре:	
PS - <u>P</u> assive	♦ TS - <u>T</u> ristate	
○ IP - Input	◇ PU - Pull- <u>u</u> p	
OP - <u>O</u> utput	◇ PD - Pull- <u>d</u> own	
10 - <u>B</u> idirectional	PP - Power Pin	
Use the PgUp and PgDn keys to) navigate through the pins	
<previous next≥<="" th=""><th><u>O</u>K <u>C</u>ancel</th><th></th></previous>	<u>O</u> K <u>C</u> ancel	
	Edit Pin Pin Name: C2 Default Pin Number: Draw body? Draw name? Draw number?	Edit Pin ? × Pin Name: C2 Default Pin Number:

Observe que o componente foi nomeado como AX1RC2: A, onde C2 representa a tensão nominal da bobina, que no caso é de 12V. A letra "A" representa uma das partes do componente.

ake Device	?
ndexing and Library Selection	
Device <u>C</u> ategory:	Save Device To Library:
Switches & Relays	
Device <u>Sub-category</u> :	
Relays (Generic)	✓ New
Device <u>M</u> anufacturer:	
Metaltex	✓ New
Stock/Order <u>C</u> ode:	
Device <u>D</u> escription:	
Bobina - AX1RC2	

O nome AX1RC2: A representa a primeira parte do componente.

Usando o mesmo procedimento, teremos para a chave:

Finalizando e salvando na biblioteca USERDVC:

T – – – – – – – – – – – – – – – – – – –	Hales Device
	Make Device
	Device Properties
· · · · · · · · · · · · · · · · · · ·	General I Enter the name for the device and the component re Device <u>N</u> ame: AX1RC2:B Reference Prefi <u>x</u> : RL Enter the name of any external module file that your
ke Device	?
ndexing and Library Selection	
Device <u>C</u> ategory:	Save Device To Library:
Curitaliza & Dalarra	New LICEDOVO
Switches & Helays	
owitches « Helays Device <u>S</u> ub-category:	
owitches « Helays Device <u>S</u> ub-category: Relays (Generic)	
owiicnes « Helays Device <u>S</u> ub-category: Relays (Generic) Device <u>M</u> anufacturer:	
owitches « Helays Device <u>S</u> ub-category: Relays (Generic) Device <u>M</u> anufacturer: Metaltex	
owiicnes « Helays Device <u>S</u> ub-category: Relays (Generic) Device <u>M</u> anufacturer: Metaltex Stock/Order <u>C</u> ode:	✓ <u>New</u>
Switches & Helays Device <u>S</u> ub-category: Relays (Generic) Device <u>M</u> anufacturer: Metaltex Stock/Order <u>C</u> ode:	✓ <u>New</u>
Switches & Helays Device Sub-category: Relays (Generic) Device Manufacturer: Metaltex Stock/Order Code: Device Description:	
Switches & Helays Device <u>Sub-category:</u> Relays (Generic) Device <u>Manufacturer:</u> Metaltex Stock/Order <u>C</u> ode: Device <u>D</u> escription: Contato - AX1RC2	✓ <u>New</u>
Switches & Helays Device <u>Sub-category:</u> Relays (Generic) Device <u>M</u> anufacturer: Metaltex Stock/Order <u>C</u> ode: Device <u>D</u> escription: Contato - AX1RC2	

Observe que as duas partes do componente, contato (chave) e bobina (indutor) receberam o mesmo nome, porém, foram diferenciadas com as letras A e B.

Para finalizar, selecionar os dois símbolos e associá-los ao *package* criado, clicando no ícone *Packaging Tool*.

¦ 💽 🐹 🍭 ‡≠	E 🛛 🕅 🛣 🕞
	Packaging Tool

Observe que as colunas A e B definem os pinos correspondentes a bobina e a chave (contato) do dispositivo.

Vamos construir uma placa de CI para um relê eletrônico conforme mostra a figura a seguir, a partir de um diagrama esquemático no Proteus ISIS.

P1 = 100k linear

Q1 = BC548 D1 = 1N4149 C1 = 100uF Na entrada (IN) pode ser ligado um sensor ou qualquer outro dispositivo para disparar o relê, enquanto que na saída (OUT), os contatos podem compor um circuito de

alarme. Veja na figura a seguir os dispositivos que foram selecionados:

File	View Edit Tools Design) Graph S
	i 🛱 🔚 👘 👘 🖬) 🛛 🖉 🖽
► + Ш	+	
≞ ‡ ‡ III ☆ 💥	PL DEVICES IN4148 3009P-1-104LF AX1RC2:A AX1RC2:B BC548 CAP-ELEC RES SIL-100-02	

Exportando para o Proteus ARES.

Verifica-se que o *package* do relê já contem as duas partes, A e B.

No Component Mode aparece como RL1.

Veja que no diagrama esquemático, tanto a parte A como a parte B foram nomeadas como RL1.

A partir daí, construir a placa de CI seguindo todos os procedimentos adotados anteriormente.

A figura a seguir mostra a placa de CI pronta.

A próxima figura mostra a placa de CI com um chapado interligando todos os pontos de terra (GND) no layer BOTTOM COPPER.

Vista 3D:

Dimensões da placa: 2475th x 1600th (6,3 x 4,1cm). Observe que os furos estão conectados ao plano de terra (GND).

CRIAÇÃO DE UM COMPONENTE MULTIGATE HOMOGÊNEO

Neste capítulo vamos criar um componente multigate homogêneo, um amplificador operacional quádruplo fabricado pela Hitachi o HA17301P, cujo diagrama é mostrado na figura a seguir:

É um AO com encapsulamento DIL14 contendo 4 amplificadores operacionais.

Vamos aproveitar o símbolo eletrônico e o *package* já existentes no Proteus ISIS e no Proteus ARES.

No Proteus ISIS:

Adicionando os pinos de alimentação (V+) e (V-):

- Selecionar o componente e clicar em Decompose
- No modo Device Pins Mode, acrescentar os pinos de alimentação

Editando e nomeando os pinos:

- + Entrada não inversora
 - Entrada inversora

Esses pinos são pinos de entrada IP (Input)

As figuras a seguir mostram a edição dos pinos de saída e de alimentação

Edit Pin		?×
Pin <u>N</u> ame: DP Default Pin N <u>u</u> mber:		
Draw body? ✓ Draw name? ✓ Draw number? ✓	Rotate Pin Name? Rotate Pin Number?	
	Electrical Type:	
 ✓ PS - <u>P</u>assive ✓ IP - <u>I</u>nput ✓ OP - <u>O</u>utput ✓ IO - <u>B</u>idirectional 	← TS - <u>I</u> ristate PU - Pull- <u>up</u> PD - Pull- <u>d</u> own ← PP - Power Pin	

	Edit Pin	? 🛛
*	Pin <u>N</u> ame: +V Default Pin N <u>u</u> mber:	
	Draw body? Draw na <u>m</u> e? ■ R Draw numbe <u>r</u> ? ✔ R	otate Pin Name?
	<u>E</u> lectrical Ty	/pe:
	♦ PS - Passive	∑TS - <u>T</u> ristate
×	◇ IP - <u>I</u> nput	PU - Pull- <u>u</u> p
	OP - <u>O</u> utput	PD - Pull- <u>d</u> own PP - Po <u>w</u> er Pin
	Use the PgUp and PgDn keys to na	vigate through the pins
×	<previous next≥<="" th=""><th><u>O</u>K <u>C</u>ancel</th></previous>	<u>O</u> K <u>C</u> ancel

×	Edit Pin	?×
N	Pin <u>N</u> ame: ↓↓ Default Pin N <u>u</u> mber:	
× + `	Draw body? ▼ Draw name? Rotate Pin Name? Draw number? ▼ Rotate Pin Number?	
· · · · · · · · · · · · · · · · · · ·	Electrical Type:	
4	PS - Passive TS - Iristate IP - Input PU - Pull-up OP - Output PD - Pull-down IO - Bidirectional PP - Power Pine	
	Use the Pallip and PaDin keys to navigate through the p	ins

Como se trata de um componente homogêneo esse símbolo poderá ser repetido 4 vezes no package DIL14.

Associando o símbolo ao *package* DIL14:

- Selecionar o símbolo e clicar em Make Device

	****	Clear Selection		
		🖌 🐹 Cut To Clipboard		
		Copy To Clipboard		
		Paste From Clipboa	ard	
	- + _ \	🔨 🗾 Block Copy		
•	─── ───	Nove 🔣 Block Move		
- ×-	— – /	🕤 Block Rotate		
		📕 🔀 Block Delete	Delete	
		Make Douise		
			6	
	<u> </u>			
	· -	Packaging Tool		
ke Device				?
evice Properti	es			
	Gen	eral Properties:		
Enter the name for the	he device and the compon	ent reference prefix.		
Device <u>N</u> ame:	HA17301P			
Beference Prefix:				
File al				
Enter the name of a	ny external module file that	you want attached to the dev	ice when it is placed.	

- Clicar em Next para adicionar o package DIL14

^{isis} Pack	age Devid	:e			
Packagir	ngs:	efault packa	ige?	Clicar	<u>R</u> enar
No, Of G	ates: 1 Hidden	Gates	: (elements)	can be :	wapped c
+IP +V -IP -V			Input Power Input Power		
OP			Output		

DIL12	PACKAGE	12 pin DIL IC,	o. ain wiaan C, O. 3in width
DIL14 DIL16 DIL18 DIL20 DIL20	PACKAGE PACKAGE Part Name Disk Library	14 pin DIL IC 16 pin DIL IC : DIL14 : PACKAGE.LIB	C, 0.3in width C, 0.3in width
	DIL14 Preview:		
	4 0.6	βin	

Como são 4 amplificadores operacionais no mesmo encapsulamento, então vamos alterar o campo *No. Of Gate* para 4.

^{isis} Package Device												
	Packagings: DIL14											
	✓ Default package? <u>(Add)</u> <u>R</u> ename <u>D</u> elete <u>O</u> rder											
	No. Of Gate 1 alterarsparae4ts) can be swapped on the PCB layout?											
L	Pin	Hidden	Common	Туре	Α							
Ł	+IP			Input								
L	+V			Power								
L	٠IP			Input								
L	-V			Power								
	OP			Output								

Surgirão então 4 colunas A, B, C e D que representa cada um dos AOs. A partir daí é só configurar de acordo com a numeração dos pads do *package* e o nome dos pinos do símbolo.

^{isis} Package Device											
Packagings: DIL14											
✓ Default package? <u>A</u> dd <u>R</u> ename <u>D</u> elete											
No. Of Gates: 4 Gates (elements) can be swapped on the PCB layo											
dden	Common	Туре	A	В	С	D					
		Input)				
		Power									
		Input									
		Power									
		Output									
	Devic DIL1 DE 4 dden	Device DIL14 Default packa 4 Gates dden Common	Device DIL14 Default package? 4 Gates (elements dden Common Type Input Power Input Power Output	Device DIL14 ✓ Default package? Add 4 Gates (elements) can b dden Common Type A Input Power Input Power Output	Device DIL14 ✓ Default package? Add 4 Gates (elements) can be swapped dden Common Type A B Input Power Input Power Input Power Input Input Output Output Input Input	Device DIL14 ✓ Default package? Add 4 Gates (elements) can be swapped on the swapp	Device DIL14 ✓ Default package? Add Add Bename Default 4 Gates (elements) can be swapped on the PCB dden Common Type A B C D Input Power Input In				

Os pinos de alimentação +V e –V são comuns. Basta marcar a coluna *Common* para esses pinos.

^{isis} Package Device											
	Packagings: DIL14										
	✓ Default package? <u>A</u> dd <u>R</u> ename <u>D</u> ele										
	No. Of Gate 4 Gates (elements) can be swapped on the PCB la										
	Pin	Hidden	Common	Туре	Α	В	С	D			
	+IP			Input							
	+V		 ✓ 	Power	1						
	-IP			Input							
	-V		 	Power							
	OP			Output							

Observe que as colunas A, B, C e D para esses dois pinos foram mescladas.

Associando os números dos pads do *package* com o nome dos pinos, podemos então definir:

AO 1 = coluna A, AO 2 = coluna B, AO 3 = coluna C, AO 4 = coluna D

Deverá ficar associado como mostra a figura a seguir:

^{isis} Package Device											
Packagings: DIL14											
✓ Default package? <u>Add</u> <u>Bename</u> <u>Delete</u>											
No. Of Gate 4 Gates (elements) can be swapped on the PCB layou											
Pin	Hide	den	Common	Туре	A	В	С	D			
+IP				Input	2	1	13	12)		
+V			~	Power	<mark>14</mark>						
-IP				Input	3	6	8	11			
-V			 	Power	7						
OP				Output	4	5	9	10			
	I			1	I	I	1	1	1		

Para finalizar, atribuir a categoria e subcategoria ao componente

Make Device	? 🗙
Indexing and Library Selection	
Device <u>C</u> ategory:	Save Device To Library:
Operational Amplifiers	USERDVC
Device <u>S</u> ub-category:	
Quad New	
Device <u>M</u> anufacturer:	
Hitachi 🗨 New	
Stock/Order <u>C</u> ode:	
Device <u>D</u> escription:	
Quad Operational Amplifier	
Advanced Mode (Edit Fields Manually)	
Device Notes:	
<u>H</u> elp <u>≺</u> Back Next⊵	<u>O</u> K <u>C</u> ancel

A figura a seguir mostra o dispositivo criado, no Proteus ISIS.

Observa-se que os pinos de alimentação 7 e 14 estão desalinhados.

Embora isto não represente nenhum problema, pode ser contornado no início do processo de criação do componente quando da colocação e a edição desses pinos. Basta selecionar um deles e aplicar um espelhamento horizontal (X-Mirror) de forma a orientá-los em um só sentido.

ÍNDICE REMISSIVO

-Alterando a largura das trilhas de uma "net" - p.121 -Alterando o posicionamento dos labels - p.62 -Área de chapado – p.15 -Arquivos CADCAM gerados e compactados – p.30 -Arrastando e reposicionando componentes – p.11 -Artwork Mode - p.164 -Atribuindo um package para leds – p.3 -Auto Tracking Neck - p.154 -Auto-router (ícone) – p.43 -Biblioteca USERPKG – p.89 -Bill of Materials (ícone) – p. 6 -Boundary, Relief e Clarence – p.145 -Categorias e subcategorias no Pick Packages – p.106 -Comando UNDO (ícone) – p.118 -Compactação de arquivos Gerber - p.65 -Component Mode – p.37, 67 -Component Mode (ícone) – p.8, 56 -Conexão de PADS de furação com o GND - p.75 -Connectivity Errors - p.40 -Connectivity Highlight Mode – p.74 -Connectivity Highlight Mode (ícone) - p.18 -Connectivity Rules Checker (ícone) – p.44 -Construção de uma placa de CI a partir do Proteus ARES – p.103 -Contorno ou borda da placa de CI com o layer Board Edge - p.14 -Conversão de th para mm (Thou para milímetros) – p. 30 -Criação de componente – chave de toque – p.167 -Criação de um componente multigate heterogêneo – p.199 -Criação de um componente multigate homogêneo – p.212 -Criação de uma EEprom AT24C128 - p.186

-Criando um jumper – p.128

-Criando um PCB Package – p.172

-Decompose – p.175

- -Definindo ponto de origem na criação de componente p.170
- -Design Explorer (ícone) p.6, 35
- -Design Rule Manager p.42
- -Device Pins Mode (ícone) 213
- -Dimensões da placa de CI p.30
- -Edit Layers Colours/Visibility Gerber Viewer p.157
- -Editando PCB Packages p.111
- -Editando um pad p.135
- -Editando um traçado p.117
- -Editando Zone Mode p.21
- -Electrical Rules Check p.35
- -Escolha do Snap Grid p. 8
- -Estilos e visualização do grid p.9
- -Excluindo componentes da simulação no Proteus ISIS p.83
- -Excluindo componentes do layout do Proteus ARES p.85
- -Ferramenta 2D Graphics Box Mode p.187
- -Ferramenta 2D Graphics Circle Mode (ícone) p.88
- -Ferramenta 2D Graphics Markers Mode p.140
- -Ferramenta 2D Graphics Mode (ícone) p.14
- -Ferramenta Device Pins Mode p.188
- -Ferramenta Dimension Mode p.140
- -Ferramenta Graphics Markers Mode p.188
- -Ferramenta Mitre p.44
- -Generate Gerber/Excellon Files (ícone) p.53
- -Gerando arquivos Gerber no projeto Vagalume Biônico p.26
- -Gerber Viewer p.159
- -Identificando PCB Packages p.111
- -Identificando uma placa de CI com 2D Graphics Text Mode p.23
- -Imprimindo um projeto p.32
- -Iniciando o roteamento manual p.19
- -Inserção de furos de fixação p.38
- -Inserção de um ponto de origem p.87

-Layer Keepout – p.155 -Layer no Proteus ARES - p. 10 -Layer Selector (ícone) - p.10, 40 -Layer selector blind-top e blind-bottom - p.128,130 -Layer selector buried - p.128,131 -Make Device - p.180 -Mitre e Unmitre – p.45, 46 -Modificando a largura de um traçado – p.117 -Modificando e alterando as configurações de um PAD – p.86 -Mudança do estilo do cursor – p.12 -Netlist Errors – p.36 -Ocultando a área de seleção de objetos ou componentes - p.108 -Package Mode – p.67 -Package Mode (ícone) – p.57 -Packaging Tool – p.207 -Padrão (default) para roteamento automático - p.96 -Pads - p.134 -Padstack Mode – p.135 -Personalizando a cor da área de chapado - p.144 -Personalizando Selection Filter - p.149 -Physical Part List View - p.35 -Placa de CI de um amplificador de tensão – p.33 -Placa de CI de um gerador de clock com o 555 – p.55 -Placa de CI de um multivibrador astável – p.1 -Placa de CI de um sequenciador de 10 leds - p.83 -Placa de CI de uma fonte de alimentação com LM317 – p.66 -Ponto de origem falso (Toggle False Origin) – p. 31 -Posicionando componentes no layer Top Silk – p. 10 -Pre-Production Checker - 79 -Pré-requisitos recomendados para o Proteus ARES - p.1 -Print Layout – p.81, 162 -Ratsnest Mode – p.113 -Reposicionando labels - p.13

-Roteamento automático (Auto-Router) – p.41

-Roteamento automático com área de chapado – p.47 -Roteamento manual no layer Copper Bottom – p.15 -Round Through-hole Pad Mode (ícone) – p.38 -Round Through-hole Pad Mode (ícone) – p.86 -Salvando um projeto com a extensão .LYT – p.24 -Selection Filter (filtro de seleção) - p.148 -Set Output Area – p.166 -Teclas de atalho para o grid e snap grid – p. 10 -Trace Angle Lock – p. 153 -Trace Angle Lock, Auto Tracking Neck - p.152 -Track Mode (ícone) – p.19, 115 -Track Selection Mode - p.151 -Unidades de medidas utilizadas no Proteus ISIS e ARES - p.6 -VIA – p.59 -Via Mode (ícone) - p.126 -Vias e layers (multilayers) - p.125 -View Electrical Report (ícone) – p.7 -Visualização 3D de um package – p.90 -Visualização em 3D - p.25 -Visualizando os layers com o Edit Layer Colours/Visibility – p.28 -Visualizando um arquivo CADCAM Drill em .txt - p.54 -Zone Mode – p.15 -Zone Mode – p.72 -Zone Mode, explorando mais recursos – p.142