DISPOSITIVOS OPTOELETRÔNICOS Leds e Fotodiodos

OBJETIVOS:

Analisar o funcionamento de um acoplador optoeletrônico e a performance dos dispositivos emissores de luz (leds).

INTRODUÇÃO TEÓRICA

A optoeletrônica é uma tecnologia que associa a óptica com a eletrônica, baseados na reação de uma junção pn.

Os componentes optoeletrônicos mais conhecidos são os diodos emissores de luz (LED), fotodiodos, optoacopladores, etc.

DIODOS EMISSORES DE LUZ (LED)

Em um diodo de junção comum com polarização direta, há uma combinação de portadores na junção (elétrons-lacunas) . À medida que esses elétrons caem de um nível mais alto de energia para um nível mais baixo, eles irradiam energia, sendo uma parte dessa energia emitida em forma de calor e outra parte na forma de *fótons*.

No silício e no germânio a maior parte dessa energia é emitida na forma de calor, sendo a luz emitida insignificante.

O diodo LED tem sido atualmente utilizado para indicação em substituição as lâmpadas piloto convencionais, devido ao seu baixo consumo de energia (baixa tensão e baixa corrente), sua vida longa e rápida comutação *on-off* (liga-desliga).

Enquanto os diodos comuns são fabricados a partir do silício e do germânio, os LEDs são construídos a partir de elementos como o fosfato de arsenieto de gálio (GaAsP) ou o fosfato de gálio (GaP) e o número de *fótons de luz* emitida é suficiente para constituir uma fonte de luz bastante visível. O processo de emissão de luz por aplicação de uma fonte elétrica de energia é chamada de *eletroluminescência*.

O símbolo mais utilizado para representar um diodo LED é mostrado abaixo:

Como o LED é um dispositivo de junção pn ele terá uma característica de polarização direta

Os LEDs operam com uma tensão típica que varia entre 1,7 a 3,3V para correntes entre 10 a 50mA e potências típicas entre 10 a 150mW emitindo luz nas cores vermelha, amarela, laranja, verde, branca e azul e atualmente também na cor azul.

A corrente e a tensão em um LED varia de acordo com a cor do LED e sua própria tolerância.

O fato de sua construção ser de semicondutor, torna-o bastante robusto, podendo sua vida útil atingir cerca de 100.000 horas.

A corrente no LED pode ser calculada pela fórmula:

$$I = V - V_{LED} / R_S$$

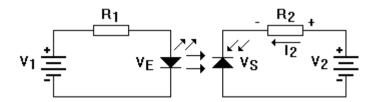
Admitindo uma tensão no LED de 2V e uma tensão de alimentação de 12V, e um resistor limitador de 820Ω , teremos:

$$I = 12 - 2 / 820 = 12,2mA$$

Portanto, o brilho de um LED depende de sua cor e característica. Por exemplo, o LED TIL222 é um LED verde com uma tensão que varia de 1,8V a 3V (mínima e máxima respectivamente), para uma corrente aproximada de 25mA.

FOTODIODOS

O fotodiodo caracteriza-se por ser sensível à luz, isto é, quanto a luz incide em sua junção, ocorre uma produção de elétrons e lacunas.


Quanto maior for a intensidade luminosa que incide na junção, maior será o número de portadores minoritários e maior será a corrente reversa.

A figura abaixo mostra o símbolo de um fotodiodo:

Em resumo, podemos dizer então que um fotodiodo é um dispositivo que converte a luz recebida em uma determinada quantidade elétrica.

Se associarmos um LED a um *fotodiodo*, teremos então um optoacoplador, conforme mostra a figura abaixo:

O optoacoplador possui em LED no lado da entrada e um fotodiodo no lado da saída. A tensão da fonte V_1 e o resistor série R_1 produzem uma corrente através do LED. Por sua vez a luz emitida pelo LED atinge o fotodiodo, produzindo a corrente I_2 . Somando as tensões ao longo da malha, temos:

$$V_S(\text{sa\'ida}) - V_2 + I_2R_2 = 0$$

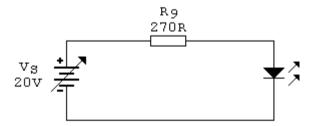
 $V_S(\text{sa\'ida}) = V_2 - I_2R_2$

No circuito acima a tensão de saída depende da corrente reversa I_2 . Se a tensão de entrada V_1 estiver variando, a quantidade de luz emitida estará também flutuando, o que significa que a tensão de saída também estará flutuando de acordo com a tensão de entrada.

Portanto o optoacoplador é um dispositivo capaz de acoplar um sinal de entrada com um circuito de saída, com a vantagem de possuir uma isolação entre os dois circuitos extremamente elevada, pois o único contato entre esses dois circuitos é um feixe de luz.

PARTE PRÁTICA

Nesta experiência analisaremos o comportamento dos LEDs quanto a sua performance no que diz respeito ao seu brilho em função da corrente que circula pelo mesmo e de um optoacoplador comercial.

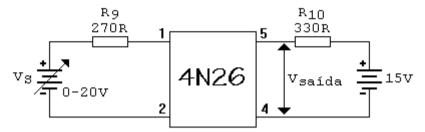

O diodo LED pode ser identificado quanto a sua polaridade, bastando para tanto examiná-lo com cuidado quanto ao seu aspecto físico.

Um dos lados do encapsulamento tem um chanfrado, que identifica o terminal do catodo. Alguns fabricantes fazem o terminal do catodo menor do que o terminal do anodo.

MATERIAIS NECESSÁRIOS

- 2 Fontes de alimentação 0-20V
- 1 Optoacoplador 4N26 ou equivalente
 - 1 Multímetro analógico ou digital
 - 1 Placa tipo Proto-board
 - 1 Módulo de ensajos ELO-1

1 - Monte o circuito da figura a seguir, usando um LED vermelho:



- 2 Ajuste a tensão da fonte V_S até obter uma corrente de 10mA no LED. Anote a tensão do LED com este valor de corrente na tabela 1.
- 3 Ajuste a tensão da fonte até obter os valores de corrente listados na tabela 1. Anote cada valor de tensão no LED.
- 4 Substitua o LED vermelho pelo LED verde.
- 5 Repita os passos 2 e 3 para o LED verde.

TABELA 1

I	V _{LED} (vermelho)	V_{LED} (verde)
10mA		
20mA		
30mA		
40mA		

6 - Monte o circuito da figura a seguir:

- 7 Ajuste a fonte V_S para 2V. Meça e anote a tensão na saída $(V_{\text{saída}})$ na tabela 2.
- 8 Repita o passo 7, seguindo os ajustes de V_S listados na tabela 2.

TABELA 2

$\mathbf{V_S}$	$V_{SAÍDA}$	
2V		
4V		
6V		
8V		
10V		
12V		
14V		

QUESTÕES:

- 1 A queda de tensão no LED vermelho com uma corrente de 30mA foi próxima de:
 - a) 0V
- b) 1V
- c) 2V
- d) 4V
- 2 A queda de tensão no LED verde com uma corrente de 30mA foi próxima de:
 - a) 0V
- b) 1V
- c) 2V
- d) 4V
- 3 No circuito optoacoplador desta experiência, quando a fonte de tensão aumenta, a tensão na saída:
 - a) diminui
 - b) permanece a mesma
 - c) aumenta
- 4 Projete um resistor limitador de corrente para o LED vermelho, para que pelo mesmo circule uma corrente de 18mA, quando a tensão na fonte for 15V.

5 - Monte o circuito com o resistor que você projetou e verifique se há coincidência entre o valor projetado e medido.
6 - Repita os passos 4 e 5, usando agora um LED verde.

7 - Qual é a diferença básica entre os leds de cores vermelha, verde e amarela?