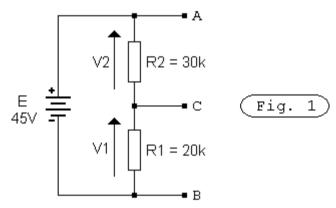
DIVISOR DE TENSÃO SEM CARGA

OBJETIVOS:


- a) estudar o funcionamento de circuitos resistivos divisores de tensão;
- b) estudar o funcionamento de circuitos divisores de tensão variável.

INTRODUÇÃO TEÓRICA

A Lei de Ohm tem imediata aplicação na análise, no cálculo e no projeto de circuitos divisores de tensão.

Nesta experiência estudaremos os divisores de tensão sem carga, isto é, os circuitos que não tem que fornecer uma corrente ou potência a uma carga externa.

Um dos divisores de tensão mais simples é aquele composto por apenas dois resistores, conforme mostra a figura 1.

Sendo a intensidade de corrente no circuito "I", podemos escrever:

$$v_1 = R_1 I$$

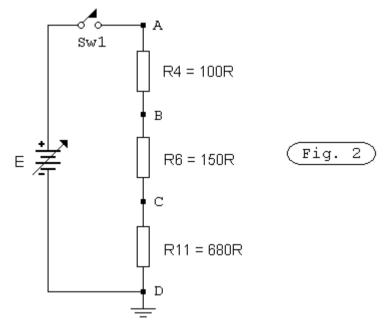
$$v_2 = R_2 I$$

Para calcular a intensidade de corrente "I", podemos utilizar a equação abaixo, onde a soma dos resistores R1 e R2 equivalem a resistência total ou equivalente.

$$I = \frac{E}{R_1 + R_2}$$

Podemos então relacionar a tensão total "E" com uma das tensões V_1 ou V_2 , onde teremos:

$$v_1 = E \cdot \frac{R_1}{R_1 + R_2}$$


$$v_2 = E \cdot \frac{R_2}{R_1 + R_2}$$

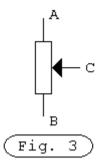
Calculando-se as tensões V_1 e V_2 , teremos:

$$V_1 = 45V \cdot 20k / (20k + 30k) = 18V$$

 $V_2 = 45V \cdot 30k / (20k + 30k) = 27V$

Somando-se V_1 e V_2 , teremos 18V + 27V = 45V, que corresponde a tensão aplicada nos resistores.

O circuito da figura 2, é um divisor de tensão composto por 3 resistores.



Fechando Sw₁ e seguindo o raciocínio anterior, temos:

$$\begin{split} V_{R4} &= E \;.\; R_4 / \left(R_4 + R_6 + R_{11} \right) \\ V_{R6} &= E \;.\; R_6 / \; \left(R_4 + R_6 + R_{11} \right) \\ V_{R11} &= E \;.\; R_{11} / \left(R_4 + R_6 + R_{11} \right) \end{split}$$

Existem ocasiões no entanto, que se torna necessário projetar um divisor de tensão variável, o que implicaria na utilização de resistores variáveis que permitam a obtenção de qualquer valor de tensão dentro de certos limites, impostos pela tensão aplicada na entrada.

Utiliza-se para tal fim um potenciômetro, que é um resistor variável e cujo símbolo é mostrado na figura 3.

Observa-se que o ponto C é variável, de tal forma que o mesmo possa se aproximar do extremo superior (ponto A) ou do extremo inferior (ponto B).

Entre os pontos A e B, mede-se o valor nominal da resistência do potenciômetro, qualquer que seja a posição do cursor. Se o cursor (ponto C) estiver exatamente no meio, teremos então:

$$R_{AC} = Rn/2$$
$$R_{CB} = Rn/2$$

Onde, Rn é a resistência nominal do potenciômetro. Isto significa que se o cursor estiver na posição central e o valor nominal do potenciômetro for, por exemplo, 1000Ω , teremos nessas condições:

$$R_{AC} = 500\Omega$$
$$R_{CB} = 500\Omega$$

Se o cursor (ponto C) estiver totalmente no extremo superior, teremos:

$$R_{AC} = 0$$

$$R_{CB} = 1.000\Omega$$

Se o cursor (ponto C) estiver totalmente no extremo inferior, teremos:

$$R_{AC} = 1.000\Omega$$
$$R_{CB} = 0\Omega$$

O "trimpot" é um dispositivo que executa as mesmas funções do potenciômetro, porém o mesmo classifica-se como resistor ajustável.

O cursor central do potenciômetro, se este for rotativo, é o seu eixo, que pode ser movimentado tanto para a esquerda como para a direita. Se o mesmo for do tipo "deslizante", este é formado por uma alavanca que permite seu movimento horizontalmente. Os trimpots podem ser do tipo vertical e horizontal, para fixação "de pé" ou "deitado" respectivamente.

Geralmente o cursor

é preso a um disco dentado para sua movimentação com o auxílio dos dedos ou ainda, o cursor central pode não possuir este disco dentado, mas, apenas uma pequena fenda, para que possa ser movimentado com o auxílio de uma pequena chave de fenda.

PARTE PRÁTICA

MATERIAIS NECESSÁRIOS

- 1- Módulo de ensaios ETT-1
- 1- Multímetro analógico ou digital
- 1- Execute a fiação do circuito da figura 2.
- 2- Calcule a resistência equivalente e a tensão entre os pontos: A-D; A-C e A-B e anote na tabela 1.
- 3- Calcule a corrente que circula pelo circuito e anote na tabela 1.
- 4- Calcule a tensão em cada um dos resistores e anote na tabela 1.
- 5- Com o módulo de ensaios desligado da rede e Sw₁ aberta, meça a resistência equivalente entre os pontos A-D; A-C e A-B e anote na tabela 1.
- 6- Ligue o módulo de ensaios na rede, feche Sw_1 , ajuste E para 10V, meça a tensão em cada um dos resistores e entre os pontos A-D; A-C e A-B e anote esses valores na tabela 1.
- 7- Meça e anote na tabela 1 a corrente total do circuito.

Tabela 1

PARÂMETROS	CALCULADO	MEDIDO
Resistência entre os pontos A-D		
Resistência entre os pontos A-C		
Resistência entre os pontos A-B		
Tensão entre os pontos A-D		
Tensão entre os pontos A-C		
Tensão entre os pontos A-B		
Tensão em R4		
Tensão em R6		
Tensão em R11		
Corrente total no circuito		

8- Execute a fiação do circuito da figura 4.

9- Calcule a resistência total do circuito com o cursor na extremidade superior, extremidade inferior e posição central (aberto, fechado e na posição central respectivamente) e anote na tabela 2. Olhando P1 de frente, o terminal à esquerda corresponde ao ponto A, o terminal central ao ponto C e o terminal à direita corresponde ao ponto B. Obedeça as seguintes convenções, orientando-se pela seta impressa no disco dentado de P1:

ABERTO: cursor totalmente à direita. FECHADO: cursor totalmente à esquerda. POSIÇÃO CENTRAL: posição intermediária.

10- Com o módulo de ensaios desligado da rede e Sw_1 aberta, meça a resistência total do circuito (pontos A e B) e anote na tabela 2.

Tabela 2: Resistência total do circuito

RESISTÊNCIA TOTAL	CALCULADO	MEDIDO
Cursor aberto		
Cursor fechado		
Cursor na posição central		

11- Compare os valores calculados e medidos na tabela 2 e apresente conclusões:	

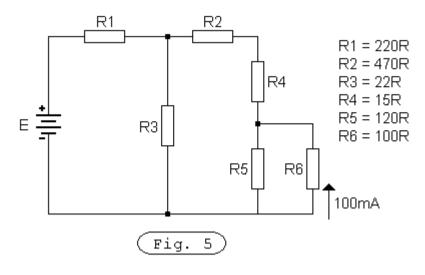

12- Calcule as tensões V_{AC} , V_{CB} e V_{AB} com o cursor aberto, fechado e na posição central e anote esses dados na tabela 3.

Tabela 3

	CALCULADO	MEDIDO
V _{AC} cursor aberto		
V _{AC} cursor fechado		
V _{AC} cursor na posição central		
V _{CB} cursor aberto		
V _{CB} cursor fechado		
V _{CB} cursor na posição central		
V _{AB} cursor aberto		
V _{AB} cursor fechado		
V _{AB} cursor na posição central		

13- Ligue o módulo de ensaios na rede, feche Sw_1 , meça essas tensões e anote na tabela 3.
14- Compare os valores calculados e medidos na tabela 3 a apresente conclusões:
QUESTÕES:
1- O que é divisor de tensão sem carga?
2- O que é potenciômetro?
3- Calcule o valor da tensão E para o circuito da figura 5, considerando que a corrente que circula

por R6 é 100mA (apresentar cálculos).

$\mathbf{E} =$	
----------------	--

Calculos:			