RESISTORES (CÓDIGO DE CORES E FABRICAÇÃO) USO DO OHMÍMETRO

OBJETIVOS:

- a) utilizar o ohmímetro para medidas de resistência elétrica;
- b) familiarizar com as escalas do instrumento;
- c) identificar o valor da resistência ôhmica de um resistor pelo código de cores.

INTRODUÇÃO TEÓRICA

RESISTORES:

1- DEFINIÇÃO: Resistores são componentes que tem por finalidade oferecer uma oposição à passagem da corrente elétrica, através de seu material.

2 - TIPOS:

- 2.1 Fixos
- 2.2 Não fixos
 - 2.2.1 Variáveis: potenciômetros
 - 2.2.2 Ajustáveis: trimpots

3- MATERIAIS UTILIZADOS NA FABRICAÇÃO:

- 3.1 Filme de carbono
- 3.2 Fio especial (fio resistor)
- 3.3 Filme metálico
 - 3.3.1 Níquel
 - 3.3.2 Níquel-cromo
 - 3.3.3 Cromo-silício
- 3.4 Chip

4- APLICAÇÃO DOS TIPOS DE RESISTORES:

- 4.1 Filme de carbono uso geral
- 4.2 Fio especial potência e instrumentos
- 4.3 Filme metálico precisão, uso geral, fusistor e potência
- 4.4 Chip montagem em superfície (SMD)

5- PRINCÍPIO DE FABRICAÇÃO:

Normalmente os resistores possuem um corpo cilíndrico de cerâmica de alta qualidade, que pode ser de SiO_2 (óxido de silício) ou de Al_2O_3 (óxido de alumínio), sobre o qual será depositado o filme homogêneo apropriado.

Nas extremidades do cilindro recoberto são colocadas as tampas de contato de aço galvanizado com cobre e estanho sob uma pressão média de 20kg. Sobre as tampas são soldados os terminais, normalmente de cobre eletrolítico estanhado, sendo esta solda feita por fusão.

Para a obtenção de toda a gama de valores resistivos é feito um sulco de conformação helicoidal, de tal forma que o resistor propriamente dito é constituído de uma placa helicoidal de filme em torno do bastão de cerâmica.

Para esse serviço utilizam-se máquinas especiais de corte e raio laser para o ajuste final do valor do resistor. Portanto, para se obter o valor do resistor são utilizados simultaneamente dois processos:

- a) Alteração da espessura do filme no processo de deposição
- b) Escolha do passo apropriado para o sulco em hélice

Estes dois processos fazem com que quanto menor a espessura do filme ou menor o passo, maior será o valor resistivo.

Após esta etapa, o resistor é revestido com uma camada de verniz especial, a qual tem as funções de proteção elétrica, mecânica e climática, sendo que esse revestimento resiste à maioria dos solventes de limpeza que são usados na indústria.

No caso dos resistores fabricados pela Philips / Constanta, a cor de seu revestimento indica também o tipo e a potência do resistor.

6 - CLASSIFICAÇÃO DOS RESISTORES PHILIPS / CONSTANTA QUANTO A COR E SUA POTÊNCIA:

6.1 - RESISTORES DE FILME DE CARBONO

TIPO	POTÊNCIA	COR DO REVESTIMENTO
Precisão	0,33W	Bege

6.2 - RESISTORES DE FILME METÁLICO

TIPO	POTÊNCIA	COR DO REVESTIMENTO
Precisão	0,4W	Verde escuro
Uso geral	0,33W	Verde claro
Uso geral	0,5W	Azul
Uso geral	0,5W	Rosa claro
Potência	0,5 e 3W	Vermelho escuro
Não inflamável	0,33 e 0,5W	Cinza

7 - POTÊNCIA:

7.1 - DEFINIÇÃO:

É a relação entre o valor de sua resistência e a corrente que o atravessa.

7.2 - CARACTERÍSTICAS:

A potência dissipada por um resistor é fornecida para uso em regime de operação contínua, com sua carga total e máxima tensão de operação.

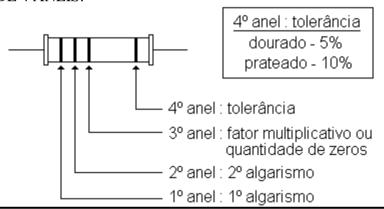
7.3 - VALORES COMERCIAIS DE POTÊNCIA:

Os valores usualmente fabricados de acordo com o tipo de resistor são:

7.3.1 - Filme de carbono e filme metálico: 1/5, 1/4, 1/3, 1/2, 3/4, 1 e 3W.

7.3.2 - Fio resistor: acima de 2.5W

8- UNIDADE DA RESISTÊNCIA ELÉTRICA:


A unidade de medida da resistência elétrica no SI é o ohm, sendo representada pela letra grega ômega maiúscula (Ω) , em homenagem a Georges Simon Ohm.

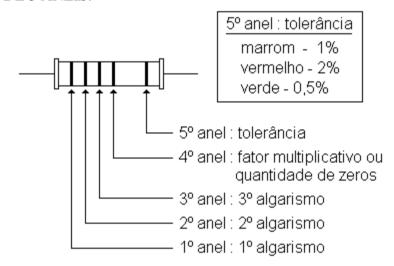
9 - IDENTIFICAÇÃO DO VALOR NOMINAL DO RESISTOR:

Os resistores são identificados por um código de cores ou por um carimbo de identificação impresso no seu corpo.

O código de cores consiste de 4 ou 5 anéis coloridos que seguem a norma de código de cores para resistores fixos IEC-62, como segue abaixo:

9.1 - RESISTORES DE 4 ANÉIS:

QUANDO NÃO FOR IMPRESSO O ANEL DE TOLERÂNCIA (SEM COR), A TOLERÂNCIA DO RESISTOR SERÁ DE 20%


COR	1° ANEL	2º ANEL	3° ANEL
Preto	-	0	x1
Marrom	1	1	x10
Vermelho	2	2	x100
Laranja	3	3	x1000
Amarelo	4	4	x10.000
Verde	5	5	x100.000
Azul	6	6	x1.000.000
Violeta	7	7	x10.000.000
Cinza	8	8	x100.000.000
Branco	9	9	x1.000.000.000

Ao fator multiplicativo ou quantidade de zeros, pode ser associado a potência de 10, conforme mostrado a seguir:

PRETO	$x 1 = 10^0$
MARROM	$x 10 = 10^1$
VERMELHO	$x 100 = 10^2$
LARANJA	$x 1000 = 10^3$
AMARELO	$x 10.000 = 10^4$
VERDE	$x\ 100.000 = 10^5$
AZUL	$x \ 1.000.000 = 10^6$
VIOLETA	$ x 10.000.000 = 10^7 $
CINZA	$ x 100.000.000 = 10^8 $
BRANCO	$x \ 1.000.000.000 = 10^9$

Observa-se que o expoente da base 10 coincide com a quantidade de zeros a serem acrescentados após os dígitos (ou algarismos) significativos.

9.2 - RESISTORES DE 5 ANÉIS:

COR	1º ANEL	2° ANEL	3° ANEL	4° ANEL
Preto	-	0	0	x1
Marrom	1	1	1	x10
Vermelho	2	2	2	x100
Laranja	3	3	3	x1.000
Amarelo	4	4	4	x10.000
Verde	5	5	5	x100.000
Azul	6	6	6	x1.000.000
Violeta	7	7	7	x10.000.000
Cinza	8	8	8	x100.000.000
Branco	9	9	9	x1.000.000.000

A exemplo do caso anterior, pode-se associar ao fator multiplicativo ou quantidade de zeros os expoentes da base 10, onde o expoente indica a quantidade de zeros a serem acrescentados após os dígitos (ou algarismos) significativos.

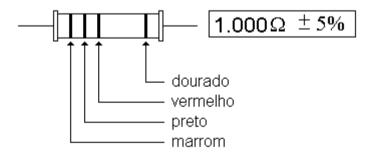
9.3- MÉTODO DE LEITURA:

Resistores de 4 anéis

A leitura do valor nominal da resistência do resistor deve ser feita através da tabela do código de cores, segundo o seguinte procedimento:

- I Lê-se o valor dos dois primeiros anéis do resistor através da tabela. Os valores encontrados irão formar um número entre 10 e 99.
- II Lê-se o terceiro anel e através da tabela determina-se o valor multiplicativo ou número de zeros ou ainda, o expoente da potência de dez que irá se juntar ao número obtido e com isso, determinar a ordem de grandeza do resistor
 - III Lê-se o quarto anel para determinar o valor da tolerância do resistor.
- IV Representa-se o valor nominal do resistor da seguinte maneira: valor encontrado na leitura dos três primeiros anéis, acrescido da tolerância.

AB x
$$10^{X}$$
 ± Tolerância


onde: A é o primeiro dígito

B é o segundo dígito

X é o fator multiplicativo ou quantidade de zeros

Se por exemplo, o 3° anel for laranja, multiplica-se AB por 1.000 ou acrescenta-se 3 zeros uma vez que o expoente da base $10 \, \text{\'e} \, 3 \, (10^3)$.

Consideremos ainda como exemplo um resistor que apresenta os seguintes anéis coloridos: 1º anel = marrom, 2º anel = preto, 3º anel = vermelho, 4º anel = dourado:

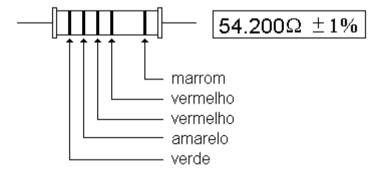
Seu valor nominal será então igual a $1.000\Omega \pm 5\%$, o que significa que a tolerância poderá estar 5% acima ou abaixo do valor nominal. Ao se medir um resistor nessas condições, será aceitável um valor entre 950 e 1.050Ω .

Resistores de 5 anéis

- I- Lê-se o valor dos primeiros 3 anéis do resistor através da tabela do código de cores. Os valores irão formar um número entre 100 e 999.
- II- Lê-se o quarto anel para determinar o fator multiplicativo que irá juntar-se ao número obtido e com isto, determina-se a ordem de grandeza do resistor.
 - III- Lê-se o quinto anel para determinar a tolerância do resistor.
 - IV- Representa-se o valor do resistor da seguinte maneira:

ABC x
$$10^{X} \pm \text{Tolerância}$$

onde: A é o primeiro dígito

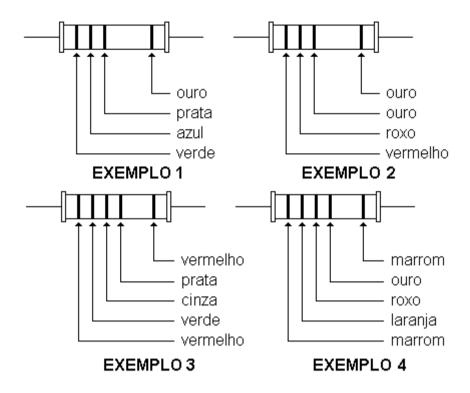

B é o segundo dígito

C é o terceiro dígito

X é o fator multiplicativo ou a quantidade de zeros

Se por exemplo, o 4° anel for vermelho, multiplica-se ABC por 100 ou acrescentam-se dois zeros uma vez que o expoente da base $10 \notin 2 (10^2)$.

Consideremos ainda como exemplo um resistor com os seguintes anéis coloridos: 1º anel = verde, 2º anel = amarelo, 3º anel = vermelho, 4º anel = vermelho, 5º anel = marrom


Seu valor nominal será então 54.200Ω ou $54.2k\Omega$ com uma tolerância de \pm 1%. Ao se medir um resistor nessas condições, será aceitável um valor entre 53.658 e 54.742Ω .

Caso comum para resistores de 4 e 5 anéis

No caso de aparecerem as cores ouro e prata no terceiro e quarto anéis (resistores de 4 e 5 anéis respectivamente), os mesmos se tornam divisores, ou seja, ao invés de multiplicar os algarismos significativos, deve-se dividir os mesmos da seguinte maneira:

DOURADO: divide-se por 10 ou multiplica-se por 0,1 PRATEADO: divide-se por 100 ou multiplica-se por 0,01

EXEMPLOS:

Exemplo 1: $0.56\Omega \pm 5\%$ Exemplo 2: $2.7\Omega \pm 5\%$ Exemplo 3: $2.58\Omega \pm 2\%$ Exemplo 4: $13.7\Omega \pm 1\%$

É muito comum ao invés de se usar o símbolo ômega (Ω) , utilizar a letra R (maiúscula) como unidade de medida de resistência elétrica, principalmente para resistores com valores abaixo de 1000Ω , que devem ter seus valores impressos no corpo, como no caso os resistores de fio e de alta potência.

Desta forma no exemplo 1, podemos escrever 0,56R ou 0R56; no exemplo 2, podemos escrever 2,7R ou 2R7 e assim por diante.

Para valores de resistência mais elevados, normalmente acima de 1.000Ω , costuma-se escrever a unidade de medida utilizando os seus múltiplos.

Os mais usados são o kilo (10^3) e o Mega (10^6) .

Assim:

 $1.000 = 1k\Omega$ ou simplesmente 1k

 $1.000.000 = 1M\Omega$ ou simplesmente 1M

10 - TOLERÂNCIA:

A tolerância do resistor indica a variação que o componente possui em função de seu valor nominal. Esta variação dará a faixa de valores possíveis que o componente pode assumir, isto é, qual

seriam os valores de resistência que o componente pode apresentar sem que o mesmo esteja fora do valor especificado pelo fabricante.

Por exemplo, um resistor de $100\Omega \pm 10\%$, significa que esse componente possui uma resistência que pode variar entre 90Ω e 110Ω . Com isto pode-se notar que não há necessidade de se fabricar resistores de 93Ω , 94Ω , 98Ω , 99Ω , 106Ω , etc. pois qualquer um destes valores estarão cobertos pelo resistor de $100\Omega \pm 10\%$, citado como exemplo.

Com uma tolerância de 5% para o mesmo valor nominal de resistor, estariam cobertos valores entre 95Ω e 105Ω .

Com base no que foi exposto, nota-se que os valores comerciais de resistores estão baseados em função de sua tolerância, e para esses valores de resistências existe uma cobertura contínua.

Então pode-se tirar as seguintes conclusões:

- I- Quanto maior for a tolerância de um resistor, mais larga será a faixa de cobertura, portanto, possuirá menos valores padronizados.
- II- Quanto menor for a tolerância de um resistor, menos estreita será a faixa de cobertura, portanto, possuirá mais valores padronizados.

11- SÉRIE COMERCIAL DE VALORES:

A série comercial de valores de resistores representa valores nominais fabricados em função da tolerância que o resistor pode ter, isto é, para cada tolerância irá existir uma quantidade padronizada de valores e para cada uma delas será designada uma referência. Os valores de resistência são obtidos a partir dos valores básicos.

Normalmente para se obter esses valores basta multiplicar os valores básicos por: 10^{-2} (ou multiplicar por 0,01 que corresponde ao terceiro ou quarto anel prateado), 10^{-1} (ou multiplicar por 0,1 que corresponde ao terceiro ou quarto anel dourado), 10^{1} (acrescentar um zero após os algarismos significativos), 10^{2} (acrescentar dois zeros após os algarismos significativos), 10^{3} (acrescentar três zeros após os algarismos significativos), 10^{4} (acrescentar quatro zeros após os algarismos significativos), 10^{5} (acrescentar cinco zeros após os algarismos significativos) e 10^{6} (acrescentar seis zeros após os algarismos significativos). Atualmente existem 6 séries de valores que são:

SÉRIE E6 - 20%

Possui 6 valores básicos, e correspondem aos resistores sem o quarto anel, isto é, o valor da resistência nominal admite uma variação de ±20% em torno do valor impresso no corpo do resistor.

Seus valores básicos são:

10	15	22	33	47	68			

Por exemplo, tomando-se o valor básico 22, podemos ter então os seguintes valores de resistência:

0R22, 2R2, 22R, 220R, 2k2, 22k, 220k e 2M2 ou $0,22\Omega$; $2,2\Omega$; 22Ω ; 220Ω ; $2,2k\Omega$; $2,2k\Omega$; $220k\Omega$ e $2,2M\Omega$

SÉRIE E12 - 10%

Possui 12 valores básicos e correspondem aos resistores com o quarto anel prateado. Admitese pois, uma variação de $\pm 10\%$ em torno de seu valor nominal. Seus valores básicos são:

Ī	10	12	15	18	22	27
	33	39	47	56	68	82

Assim, para um valor básico de 82 podemos ter os seguintes valores de resistência: 0R82, 8R2, 82R, 820R, 8k2, 82k, 820k, 8M2 ou

 0.82Ω ; 8.2Ω ; 82Ω ; 820Ω ; $8.2k\Omega$; $82k\Omega$; $820k\Omega$ ou $8.2M\Omega$

SÉRIE E24 - 5%

Possui 24 valores básicos e correspondem aos resistores com o quarto anel dourado. Admitese pois, uma variação de ±5% em torno de seu valor nominal. Seus valores básicos são:

10	11	12	13	15	16	18	20
22	24	27	30	33	36	39	43
47	51	56	62	68	75	82	91

Assim para um valor básico de 68 podemos ter os seguintes valores de resistência:

 $0,68\Omega$; $6,8\Omega$; 68Ω ; 680Ω ; $6,8k\Omega$; $68k\Omega$; $680k\Omega$ e $6,8M\Omega$

Como nos casos anteriores o símbolo " Ω " pode ser substituído pela letra "R" para designar resistores abaixo de 1.000Ω . Idêntico procedimento pode ser adotado nos próximos casos.

SÉRIE E48 - 2%

Esta série corresponde aos resistores comerciais cuja tolerância em torno de seu valor nominal é de $\pm 2\%$, possuindo 48 valores básicos. Correspondem aos resistores com o quinto anel vermelho. Seus valores básicos são:

100	105	110	115	121	127	130	140
147	154	162	169	178	187	196	205
215	226	237	249	261	274	287	301
316	332	348	365	383	402	422	442
464	487	511	536	562	590	619	649
681	715	750	787	825	866	909	953

Para um valor básico de 215, podemos obter os seguintes valores de resistência: $2,15\Omega$; $21,5\Omega$; $21,5\Omega$; $21,5\Omega$; $21,5k\Omega$;

SÉRIE E96 - 1%

Esta série corresponde aos resistores comerciais cuja tolerância em torno do valor nominal é de $\pm 1\%$, com 96 valores básicos. Possuem o quinto anel marrom. Os resistores desta série são também denominados de *RESISTORES DE PRECISÃO*.

Seus valores básicos são:

100	102	105	107	110	113	115	118
121	124	127	130	133	137	140	143
147	150	154	158	162	165	169	174
178	182	187	191	196	200	205	210
215	221	226	232	237	243	249	255
261	267	274	280	287	294	301	309
316	324	332	340	348	357	365	374
383	392	402	412	422	432	442	453
464	475	487	499	511	523	536	549
562	576	590	604	619	634	649	665
681	698	715	732	750	768	787	806
825	845	866	887	909	931	953	976

Tomando como referência o valor básico 150, podemos obter os seguintes valores de resistência: 1,5 Ω ; 15 Ω ; 15 Ω ; 150 Ω ; 1,5k Ω ; 15k Ω ; 150k Ω ; 1,5M Ω ; 15M Ω e 150M Ω .

SÉRIE E192 - 0,5%

Esta série de valores comerciais de resistores possui 192 valores básicos, também denominados RESISTORES DE PRECISÃO, admitindo uma tolerância de $\pm 0,5\%$ em torno de seu valor nominal. Correspondem aos resistores com o quinto anel verde e seus valores básicos são:

100	101	102	104	105	106	107	109
110	111	113	114	115	117	118	120
121	123	124	126	127	129	130	132
133	135	137	138	140	142	143	145
147	149	150	152	154	156	158	160
162	164	165	167	169	172	174	176
178	180	182	184	187	189	191	193
196	198	200	203	205	208	210	213
215	218	221	223	226	229	232	234
237	240	243	246	249	252	255	258
261	264	267	271	274	277	280	284
287	291	294	298	301	305	309	312
316	320	324	328	332	336	340	344
348	352	357	361	365	370	374	379
383	388	392	397	402	407	412	417
422	427	432	437	442	448	453	459
464	470	475	481	487	493	499	505
511	517	523	530	536	542	549	556
562	569	576	583	590	597	604	612
619	626	634	642	649	657	665	673
681	690	698	706	715	723	732	741
750	759	768	777	787	796	806	816
825	835	845	856	866	876	887	898
909	920	931	942	953	965	976	988

Para um valor básico igual a 920, podemos obter os seguintes valores de resistores: $9,2\Omega$; 92Ω ; 920Ω ; $9.2k\Omega$; $920k\Omega$; $9.2M\Omega$; $92M\Omega$ e $920M\Omega$.

12- CONFIGURAÇÕES DE ENTREGA E EMBALAGEM:

Normalmente os resistores possuem embalagem padrão, com 1.000, 2.000 ou 5.000 unidades, que são entregues enfitadas e com os terminais axiais.

A configuração de entrega é a maneira que o fabricante pode fornecer o componente para o consumidor, com cinco tipos básicos:

- <u>1- Enfitados com terminais axiais:</u> Esta configuração é a mais usual e destina-se basicamente ao comércio e pequenas e médias empresas.
- <u>2- Pré-formados verticais Stand-up:</u> Esta configuração é utilizada em aparelhos onde existe problema de espaço e possibilidades de curto-circuito entre seus componentes. Estes resistores devem ser montados em pé e possuem uma trava e isolação elétrica em um dos terminais.
- <u>3- Pré-formados horizontais com "kink":</u> Esta configuração é utilizada em sistema de inserção automática de componentes, pois possuem uma trava "kink" que mantém o componente a uma distância da placa de circuito impresso, com terminais cortados a uma distância padrão.
- **4- Pré-formados horizontais sem "kink":** Esta configuração é utilizada também em sistema de inserção automática, porém não possui trava e os terminais são cortados a uma distância padrão.
- <u>5- Radial taped:</u> Esta configuração é utilizada em sistema de inserção automática. Os componentes são fornecidos enfitados, com furos de tração e com trava "kink" para montagem na posição vertical.

PARTE PRÁTICA

MATERIAIS NECESSÁRIOS

- 1- Multímetro analógico
- 1- Módulo de ensaios ETT-1
- 1- Meça cada resistor do módulo de ensaios ETT-1 e anote os seus valores na tabela 1. Em cada medida coloque a chave seletora para medir resistências na posição que indique convenientemente a leitura, não esquecendo de ajustar o zero todas as vezes que mudar a chave seletora.
 - 2- Leia e anote para cada resistor sua tolerância.
 - 3- Na coluna "posição da escala" anote a posição da chave seletora (Rx1, Rx10, Rx100 etc.)
- 4- Na coluna $\Delta R(\%)$ anote o desvio percentual, comparando os valores medidos com os valores nominais. Utilize a fórmula:

ΔR(%) =	Vn - Vm	x 100	onde:
		× 100	Vn = valor nominal
	VII		Vm = valor medido

TABELA 1

Valor nominal	Tolerância	Valor medido	Posição da escala	ΔR (%)
R1=				
R2=				
R3=				
R4=				
R5=				
R6=				
R7=				
R8=				
R9=				
R10=				
R11=				
R12=				
R13=				
R14=				
R15=				
R16=				
R17=				
R18=				
R19=				
R20=				
R21=				
R22=				
R23=				
R24=				
R25=				
R26=				
R27=				
R28=				
R29=				
R30=				
R34=				
R35=				
R36=				

QUESTÕES:

1- Qual a característica do resistor que define a sua potência?
2- O que se pode dizer do valor ôhmico do resistor com relação ao seu tamanho?
3- O que é resistência? Qual o seu símbolo e unidade de medida?
4- Para que serve a tolerância?
5- Qual a aplicação de resistores que você conhece?

6- Escreva as cores dos resistores abaixo, na sequência correta de leitura:

01	560Ω ±5%	
02		
	2,2kΩ ±5%	
03	39Ω ±10%	
04	13,3kΩ ±2%	
05	110Ω ±2%	
06	3.920Ω ±1%	
07	57,6kΩ ±0,5%	
08	53Ω ±0,5%	
09	53Ω ±20%	
10	22kΩ ±20%	
11	54,9kΩ ±0,5%	
12	1MΩ ±0,5%	
13	1Ω ±0,5%	
14	1Ω ±10%	
15	10Ω ±1%	
16	$7,87$ k $\Omega \pm 1\%$	
17	12,7MΩ ±0,5%	
18	10MΩ ±0,5%	
19	10MΩ ±5%	
20	$0,56\Omega \pm 5\%$	
21	12MΩ ±1%	

22	120kΩ ±1%	
23	$0,22\Omega \pm 0,5\%$	
24	15Ω ±2%	
25	1,5MΩ ±0,5%	
26	150kΩ ±10%	
27	15kΩ ±5%	
28	5,6Ω ±1%	
29	220kΩ ±0,5%	
30	56Ω ±5%	

7- Escreva o valor dos resistores para as cores abaixo, na sequência correta de leitura, com a respectiva tolerância:

Λ1			
01	marrom, laranja, ouro, sem cor		
02	verde, azul, prata, prata		
03	marrom, preto, preto, ouro		
04	marrom, preto, verde, vermelho, vermelho		
05	verde, verde, prata, ouro		
06	amarelo, violeta, verde, vermelho, verde		
07	azul, azul, vermelho, preto, vermelho		
08	laranja, laranja, prata, prata		
09	marrom, preto, preto, marrom		
10	laranja, azul, verde, vermelho, verde		
11	marrom, marrom, marrom, verde		
12	vermelho, azul, violeta, marrom, marrom		
13	verde, branco, preto, amarelo, vermelho		
14	vermelho, violeta, amarelo, ouro, vermelho		
15	marrom, preto, preto, prata, marrom		
16	verde, amarelo, vermelho, ouro, verde		
17	amarelo, violeta, prata, prata		
18	marrom, preto, azul, sem cor		
19	amarelo, branco, laranja, azul, verde		
20	amarelo, amarelo, amarelo, verde		
21	laranja, laranja, verde, verde		
22	verde, azul, azul, prata, verde		
23	laranja, laranja, ouro, ouro		
24	marrom, marrom, amarelo, verde, verde		
25	azul, branco, vermelho, marrom, verde		
26	marrom, preto, verde, ouro		
27	azul, cinza, marrom, sem cor		
28	vermelho, vermelho, prata, ouro		
29	marrom, vermelho, azul, ouro		
30	marrom, preto, preto, marrom, vermelho		