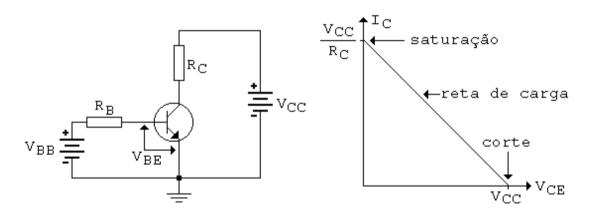
O TRANSISTOR COMO CHAVE ELETRÔNICA E FONTE DE CORRENTE

OBJETIVOS: Analisar o comportamento de um transistor no corte e na saturação e sua utilização como chave eletrônica.

INTRODUÇÃO TEÓRICA


I - Transistor como chave eletrônica:

Um transistor pode operar como chave eletrônica, bastando para tal polarizá-lo de forma conveniente: corte ou saturação.

Quando um transistor está saturado opera como um curto (chave fechada) entre o coletor e o emissor de forma que $V_{CE} \cong 0V$ e quando está no corte, opera como um circuito aberto (chave aberta) entre o coletor e o emissor, de forma que $V_{CE} \cong V_{CC}$.

No ponto de saturação (chave fechada) a corrente de base \acute{e} alta ($I_{B~SAT}$) e no ponto de corte (chave aberta) a corrente de base \acute{e} zero.

Veja na figura a seguir um transistor operando como chave eletrônica e sua respectiva reta de carga.

Para obter o extremo superior da reta de carga (corrente I_C) devemos supor um curto entre coletor e emissor ($V_{CE} = 0$), de forma que toda a tensão de alimentação se fixe no resistor de coletor.

Teremos então:
$$I_C = V_{CC} / R_C$$

Para obter o extremo inferior da reta de carga, devemos supor os terminais de coletor e emissor abertos.

Teremos então: $V_{CE} = V_{CC}$

Fica então caracterizado que o transistor opera apenas em um dos extremos da reta de carga: corte ou saturação.

Podemos então, tomando como exemplo o circuito mostrado anteriormente, calcular a corrente de base e a corrente de coletor.

Aplicando LKT para calcular a corrente de base, temos:

$$I_B R_B + V_{BE} - V_{BB} = 0$$

onde:

$$\text{I}_{B} \equiv \frac{\text{V}_{BB} - \text{V}_{BE}}{\text{R}_{B}}$$

OBS: V_{BE} típica é da ordem de 0,7V

Supondo $V_{BB} = 4V$ e $R_B = 680k\Omega$, a corrente de base (I_B) será:

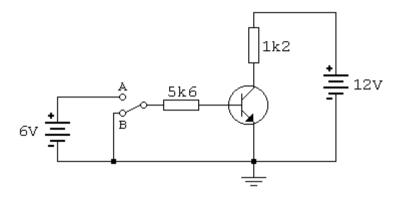
$$I_B = (4V - 0.7V) / 680k\Omega = 4.85\mu A$$

Para calcular a corrente de coletor podemos aplicar LKT na malha $V_{\text{CC}},\,V_{\text{RC}}$ e V_{CE} , onde teremos:

$$\begin{split} V_{CC} - V_{RC} - V_{CE} &= 0 \\ V_{RC} &= V_{CC} - V_{CE} \\ I_C &= V_{RC} \, / \, R_C \text{ ou } I_C = \left(V_{CC} - V_{RC}\right) \, / \, R_C \end{split}$$

No chaveamento eletrônico com transistores, devemos levar em conta dois tipos de saturação: fraca e forte.

Na saturação fraca, a corrente de base é suficiente para levar o transistor à saturação.


Tal procedimento porém não é aconselhável visto que pode haver uma variação de β_{CC} e na própria corrente de base de saturação ($I_{B \ SAT}$).

Utiliza-se normalmente a saturação forte, que assegura a condição de saturação para todos os valores de β_{CC} .

Uma regra prática é considerar a corrente de base como 1/10 da corrente de saturação de coletor.

Desta forma, supondo que $I_{C SAT} = 12mA$, então será fixada uma corrente de base de 1,2mA (relação 10:1).

Tomemos como exemplo o circuito abaixo, onde verificaremos se o mesmo está operando como chave eletrônica.

a) Considerando uma tensão de base igual a zero (chave no ponto B), a corrente de base será igual a zero (condição de corte) e a corrente de coletor será igual a zero.

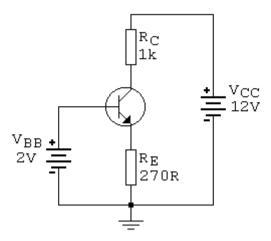
Nestas condições o transistor operará como uma chave aberta e a tensão no resistor de coletor será zero, pois $V_{RC} = R_C I_C$; logo, a tensão entre coletor e emissor será igual a 12V pois $V_{CE} = V_{CC} - V_{RC}$.

Quando a tensão de base for 6V, a corrente de base ficará:

$$I_B = (V_{BB} - V_{BE}) / R_B = (\ 6 - 0.7) / 5.600 = 0.964 mA$$

b) Imaginemos um curto entre o coletor e emissor (chave na posição A).

Neste caso, a tensão entre coletor e emissor assume idealmente 0V e a corrente de saturação do coletor pode ser assim calculada:

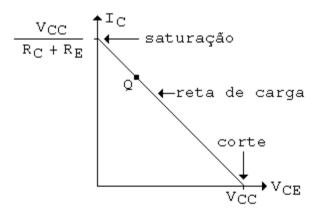

$$V_{RC} = V_{CC} - V_{CE} = 12 - 0 = 12V$$

$$I_{C \text{ SAT}} = V_{RC} / R_C = 12 / 1.200 = 10 \text{mA}$$

Comparando a corrente de base com a corrente de coletor, verifica-se que esta última é cerca de 10 vezes maior do que a corrente de base, o que assegura a saturação para uma vasta gama de β_{CC} .

II - Transistor como fonte de corrente:

Consideremos o circuito a seguir:


A diferença básica em relação ao circuito anterior (transistor operando como chave) é a inclusão de um resistor do emissor à terra.

Nestas condições o transistor opera como fonte de corrente uma vez que, a corrente de coletor mantém-se constante para uma vasta gama de β_{CC} e variações de V_{CC} .

Nestas condições, presume-se o circuito operando em qualquer ponto da reta de carga (ponto Q), dependendo da corrente necessária.

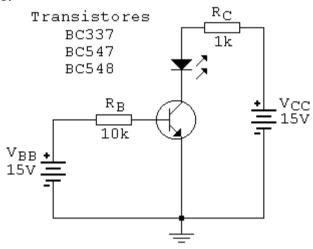
A figura abaixo ilustra a reta de carga, onde a corrente I_C é calculada da seguinte forma seguindo o procedimento anterior, porém, com a inclusão do resistor de emissor.

$$I_C = V_{CC} / (R_C + R_E)$$

Podemos então calcular a corrente de emissor. Aplicando LKT, temos:

$$\begin{split} V_{BB} - V_{BE} - I_E R_E &= 0 \\ I_E &= (V_{BB} - V_{BE}) \ / \ R_E \\ I_E &= (2 - 0.7) \ / \ 270 = \ 4.81 mA \end{split}$$

Assim, para uma vasta gama de β_{CC} teremos $I_E \cong I_C$.


PARTE PRÁTICA

MATERIAIS NECESSÁRIOS

- 1 Fonte de alimentação simétrica 0-20V
 - 1 Multímetro analógico ou digital
 - 1 Módulo de ensaios ELO-1

CHAVEAMENTO ELETRÔNICO

1 - Monte o circuito abaixo:

2 - Calcule os valores de $I_{B,}$ I_{C} e V_{CE} e anote na tabela 1;

OBS: para efeito de cálculo da corrente I_C , considere a queda de tensão nos extremos do led = 1.6V.

3 - Meça e anote os valores listados na tabela 1 para os três transistores (BC337, BC547 e BC548).

TABELA 1

CALCULADO		MEDIDO				
TRANSISTOR	I_{B}	$I_{\rm C}$	V_{CE}	I_B	I_{C}	V_{CE}
BC337						
BC547						
BC548						

- Analise os valores calculados e medidos na tabela 1 e apresente suas conclusões:						

VERIFICAÇÃO DE DEFEITOS - TRANSISTOR COMO CHAVE:

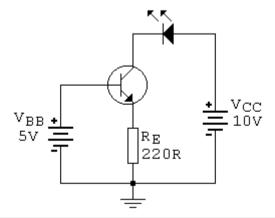
- 5 Suponha que o resistor de base esteja aberto. Calcule a anote na tabela 2 a tensão no coletor;
- 6 Repita o procedimento do item 5 para cada defeito listado na tabela 2;
- 7 Simule cada um dos defeitos, proceda as medidas e anote na tabela 2. *OBS: para simular os defeitos utilize o transistor BC547*

TABELA 2 : Verificação de defeitos

DEFEITO	$ m V_{C}$ calculada	V _C medida
Resistor de 10kΩ aberto		
Resistor de $1k\Omega$ aberto		
Coletor-emissor em curto		
Coletor-emissor aberto		

PROJETO:

- 8 Determine o valor de um resistor de coletor (valor comercial), baseando-se no circuito desta experiência, para que a corrente no coletor seja próxima de 32mA.
- 9 Monte o circuito com o resistor que você calculou (utilize o transistor BC547) e complete a tabela 3.


TABELA 3: Projeto

R_C calculado: _____

	CALCULADO		MEDIDO	
TRANSISTOR	$ m V_E$	$I_{\rm C}$	$ m V_{E}$	$I_{\rm C}$
BC547				

FONTE DE CORRENTE

10 - Monte o circuito abaixo:

11 - Calcule V_E , I_C e V_{CE} e anote na tabela 4;

OBS: considere a queda de tensão no led = 1,6V

12 - Meça e anote os valores listados na tabela 4 para os três transistores (BC337, BC547 e BC548);

TABELA 4

MEDIDO

	CALCULADO			MEDIDO		
TRANSISTOR	$\mathbf{V}_{\mathbf{E}}$	I_{C}	V_{CE}	$\mathbf{V}_{\mathbf{E}}$	I_{C}	$\mathbf{V}_{\mathbf{CE}}$
BC337						
BC547						
BC548						

13 - Analise os valores calculados e medidos na tabela 4 e apresente suas conclusões:					

VERIFICAÇÃO DE DEFEITOS - FONTE DE CORRENTE:

- 14 Suponha que o resistor de emissor esteja aberto. Calcule a anote os valores de tensão listados na tabela 5;
- 15 Simule cada um dos defeitos, proceda as medidas e anote na tabela 5. *OBS: para simular os defeitos utilize o transistor BC547*

TABELA 5: Verificação de defeitos

	CALCULADO		MEDIDO	
DEFEITO	$\mathbf{V}_{\mathbf{C}}$	$\mathbf{V_E}$	$\mathbf{V}_{\mathbf{C}}$	$\mathbf{V_E}$
Resistor de 220Ω aberto				
Coletor-emissor em curto				
Coletor-emissor aberto				

PROJETO:

- 16 Determine o valor de um resistor de emissor (valor comercial), baseando-se no circuito desta experiência, para que a corrente no coletor seja próxima de 32mA.
- 17 Monte o circuito com o resistor que você calculou (utilize o transistor BC547) e complete a tabela 6.

TABELA 6: Projeto

R_E calculado: _____

	CALCULADO			MEDIDO		
	TRANSISTOR	$\mathbf{V_E}$	I_{C}	$\mathbf{V_E}$	$I_{\rm C}$	
	BC547					
		QU.	ESTÕES:			
_	do um transistor est	á em saturação for	te, os termina	ais entre coletor e	emissor parecem	esta
aproxima	damente:					
a)	abertos					
b)	em curto					
c)	na região ativa					
d)	em corte					
	m transistor usado c e e emissor (V _{BE}) ab		ente, o emiss	or está amarrado	a uma queda de te	ensã
a)	tensão de base					
	tensão de emissor					
c)	tensão de coletor					
d)	tensão entre base e	coletor				
	nos afirmar que um função de pequenas	-		e em <i>saturação f</i> o	orte, a corrente I_{C}	vari
	a) certo		b)	errado		
4 - Um tr	ansistor como fonte	de corrente opera:				
a)	exclusivamente na	região de corte				
	exclusivamente na	•	O			
	somente na região					
	na região de corte,		r			
5 - Um saturação	transistor como ch	ave eletrônica opo	era virtualme	nte na região de	e corte e na regiã	ío d
-	a) certo		b)	errado		
•	te e esquematize u scolha através das e			_	_	-

operação (apresente os cálculos).